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（Summary） 

In overparametrized linear regression models, some recent studies report the 
double decent phenomena, that is, the predictive mean squared errors 
become small when the number of coefficient parameters increases.  We 
examine the phenomena claimed in recent studies by Hastie et al. (2022, 
Annals of Statistics), and Kelly et al. (2024, Journal of Finance).  We 
conducted two simulations, which correspond to their studies, and report the 
preliminary results. 
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概要 (Summary)

線形回帰モデルと最小二乗法は応用上で最も利用されている統計的方法
の一つである。「過適合と二重降下現象-Part I-」では線形回帰モデルを
利用して説明変数の階数に関する通常の仮定が成り立たず, データ数より
も説明変数の数が多い高次元の場合に起きうる過適合 (overfitting), 二重
降下 (double decent)現象というデータ分析における最近の話題について
考察する。Hastie et al. (2022, Annals of Statistics)による結果の一部を
紹介, Kelly et al. (2024, Journal of Finance)に類似したシミュレーショ
ンを含む二つの実験により二重降下現象を分析した結果を報告する。

1 はじめに
統計検定2級の教科書「統計学基礎」5章では多くの教科書と同様に線形回
帰モデル (linear regression models)と最小二乗法 (least squares method)

の標準的な説明にかなりのスペースを割いている。今でも最小二乗法は

12025-12-31. 統計エキスパート養成事業の一環として行われた共同研究をまとめた
未完成な原稿であり、コメントを歓迎する。

2統計数理研究所, 〒 190-8562 東京都立川市緑町 10-3
3早稲田大学
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統計的データ分析では様々な統計ソフトウエアでは標準的に装備されて
いる最もよく利用されている統計的方法の一つである。「統計学基礎」で
はさらに最小二乗法の計算方法、幾つかの統計的性質、様々な利用法に
ついて解説している。
この研究ノートでは「統計エキスパート」にとり基本的な線形回帰モデ
ルを利用して, 最近のデータ分析を巡る話題の中からデータ数よりも説明
変数が多い場合に生じうる過適合 (overfitting), 二重降下 (double decent)

現象をとりあげる。これまでの良く用いられている線形回帰モデルによ
る統計分析では母数の数がデータ数よりも小さいことを仮定するのが一
般的である。この状況における回帰分析については標準的な議論が統計
学の教科書では展開されている4。
これに対して、近年ではデータ分析において母数の数がデータ数より
も大きくなり得る場合として深層学習 (deep learning)モデルと呼ばれる
学習理論が登場し、その応用が注目されている。通常の統計的分析では
母数の数がデータ数より大きい場合は分析の初めから想定されていない
のでこうした過適合 (overparametrizationと呼ばれる) 何が起きるか、自
明な問題とは言えない。したがって, 過適合な統計モデルで何が起きるの
か、幾つかの基本的事項を解明、理解する必要がある。本稿では「過適
合と二重降下-Part I-」として典型的な例である線形回帰モデルを用いて
この統計的問題を検討する。この問題は実は線形回帰モデルという簡単
な設定であっても、従来の統計分析では十分には考察していなかった問
題であることをここで強調しておく。
さらに近年では例えばファイナンス (金融)という応用分野においてKel-

ley et al. (2024) はデータ数より母数が多い線形回帰モデルにより金融リ
ターンの予測の精度が良くなることを主張している。こうした主張がど
ういう意味で成り立つのか否かは統計分析の応用上では重要な意味があ
るだろう。
本稿ではシミュレーションや線形回帰モデルの数理的性質の検討事項
を再吟味することにより、データ数より母数の数が多い場合に予測が良
くなる現象とはどの様な状況であるのか、また説明変数の選択というよ
く行われている統計的分析はどの様な意味があるのか、と云う問題を吟
味する。特にHastie et al. (2022a)により得られた結果の一部を紹介する
とともに二つのシミュレーション実験により二重降下現象が起きる状況
の分析結果を報告する。「過適合と二重降下現象-Part II-」ではニューラ

4例えば日本語の文献としては佐和 (1979), 竹村 (1990)などが標準的である。
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ルネットと深層学習モデルを扱う予定である。

以下では第 2節で線形回帰問題における過適合と二重降下現象を考察
する。次に第 3節ではHastie et al. (2022a), Kelly et al. (2024) の説明に
類似した二つのシミュレーション結果を報告する。第 4節は幾つかの論
点についての考察を述べ、第 5節では本稿のまとめを述べる。補論A:数
理的補論として本稿で利用した定理 1∗の導出、確率行列論 (RMT)への
補足を述べ、付論Bにシミュレーション結果をまとめておく。

2 Double Decent Problem (二重降下問題)

観測可能な変数 Y を表現する確率変数 yi (i = 1, · · · , n)のベクトル
y = (yi)、p個の説明変数からなる観測ベクトル xi = (xji)より n × p行
列X = (xij), i = 1, · · · , n; j = 1, · · · , p とする。線形回帰モデルは

y = Xβ + u (1)

で与えられる。ただし p個の母数 βj から母数ベクトル β = (βj)、誤差
ui = yi − x

′
iβ (i = 1, · · · , n) より誤差ベクトル u = (ui), u = y −Xβと

する。
線形回帰モデルにおける標準的仮定は (I) E(u) = 0, (II) V(uu

′
) = σ2In

(σ2 > 0は定数), (III) rank(X) = p であり、最小二乗推定量は

β̂OLS = (X
′
X)−1X

′
y (2)

で与えられる。
ここで条件 (III)については若干の注意が必要である。通常は p < nが
仮定されるが pが nに近くなると予測誤差は大きくなるが、p = nの
場合は与えられたデータに完全フィットすることが可能である。さらに
p ≥ nの場合には「条件 (III)∗：rank(X) = n (≤ p)」を仮定する。このとき
rank(X

′
X) = n ≤ pとなる。ここでMoore-Penroseの一般化逆行列を用い

て β̂OLS = (X
′
X)+X

′
yであるが, p ≥ nの場合には β̂OLS = X

′
(XX

′
)−1y

と表現することも可能である。
誤差項の分散共分散行列が一般の場合V(uu

′
) = Σ (> 0)には一般化最

小二乗法 (GLS)は β̂GLS = (X
′
Σ+X)+X

′
Σ+y、またリッジ回帰を λを実

数として β̂R = (X
′
X + nλIp)

−1X
′
y と表現すると、limλ→0+ β̂R = β̂OLS
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である。

さて近年ではデータ分析の応用においてDeep Learning(深層学習)モデ
ルの有効性が特に注目されている。従来から知られていたNeural Networks

での多層構造の層の数を大きくすると性能が飛躍的に上がるということ
が特に画像認識や大規模言語モデルなどの工学系の応用分野を注目にされ
ているのである（最近の動向については例えばBishop and Bishop (2024)

を参照されたい。Deep Learningモデルでは一般にデータから推定される
パラメター数が膨大になる。「パラメター数を膨大にとると予測精度が上
がる」という主張はAICなど伝統的な統計学の伝承である「ケチの原理」
(principle of parsimony) に矛盾しているように考えられる。統計学の伝
承ではパラメター数を多くすると観測データ（training dataと呼ばれる）
へのモデルのフィットは良くなるが、新たなデータ（test dataと呼ばれ
る）予測力は急速に減衰する、という考え方（ケチの原理) が統計学の基
本として広く理解されている。この考え方の下でAICを始め、様々な統
計的方法が開発されてきている。本稿は線形回帰モデルを用いて過適合
を巡る統計的問題を解明する為の第一歩と位置づけられる。
ここで扱う線形回帰モデル yi = x

′
iβ + ui (i = 1, · · · , n) (βは p × 1ベ

クトル) はHastie et al. (2022a) が検討した状況と同一であり、また統計
的学習論の教科書Hastie et al. (2021)10.8節で二重降下現象の説明に用
いられたシミュレーションと類似の実験を行い、その主張の再現を試み
た。またKelly et al. (2024)で分析している統計モデルをシミュレーショ
ンにより再現を試みている。
ここでまず (xi, ui)(i = 1, · · · , n)を i.i.d.系列（期待値と分散の存在は仮
定）、あるいはxiを所与とするuiの条件付期待値・条件付分散の有限性を
仮定する。さらに設定を簡単化して、E(xi) = 0, E(xix

′
i) = Ip, E(ui) = 0,

E(u2
i ) = σ2 (> 0)、pを nに依存させて p(n)、p(n) → ∞ (n → ∞)とす

る。最小二乗推定量 (Hastie et al. (2022a)ではRidgeless least squares）は

β̂ = argmin{∥b∥2 : b minimizes∥y −Xb∥22} (3)

で与えられるが、一般逆行列 (generalized inverse)を利用して β̂ = (X
′
X)+X

′
y

と表現する。このとき p ≥ nのときデータにたいして yi = x
′
ib (i =

1, · · · , n)、すなわち n組の観測データについては統計モデルは完全フィッ
トするが、一般化逆行列は一意ではない。そこでMoore-Penroseの一般
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化逆行列をとれば一意になる5。なおHastie et al. (2022a)ではリッジ回
帰、misspecified models、非線形回帰などの性質も詳しく議論しているが
本稿では省略する。
ここでリスク関数はデータとは独立に得られる説明変数ベクトル x0に
対して予測二乗誤差

RX(β̂;β) = E[(x
′

0β̂ − x
′

0β)
2|X]] (4)

とする。この量は条件E(x0x
′
0) = Ipを利用するとRX(β̂;β) = BX(β̂;β)+

VX(β̂;β),

BX(β̂;β) = E[|E(β̂|X)− β|2 , VX(β̂;β)] = Tr[Cov(β̂|X)] (5)

となる。このとき

BX(β̂;β) = β
′
Πβ , VX(β̂;β) =

σ2

n
Tr[Σ̂

+
] (6)

である。ただしΠ = Ip − Σ̂
+
Σ̂. Σ̂ = X

′
X/n とする。

ここで線型回帰モデル yi = x
′
β+ ui (i = 1 · · · , n) が p(n) → ∞(n → ∞)

のとき意味を持つには ∥β∥が有界となる必要がある。このとき次の結果
を報告している。

定理 1 (Hastie et al. (2022a)) : 誤差項は i.i.d.系列, 条件 (I),(II)を仮定,

xi (i = 1, · · · , nは i.i.d.系列, E[xij] = 0, E[xijxik] = δjk (δjj = 1.δik =

0 if j ̸= k)), xijの 4 + δ (δ > 0次積率の存在を仮定する. 係数ベクトルβ

(p× 1)を基準化して r2 = ∥β∥22, p/n → γ (γ ≥ 0) ( n → ∞)とする。
(i) γ < 1のとき

RX(β̂;β) → σ2 γ

1− γ
(a.s.) , (7)

(ii) γ > 1のとき

RX(β̂;β) → r2(1− 1

γ
) + σ2 1

γ − 1
(a.s.) . (8)

5m × n行列 Aに対して Moore-Penrose逆行列 n × m行列 A+ とする。このとき
AA+A = A, A+AA+ = A+が成り立つ。一般にAA+とA+Aは射影行列 (projection
matrices)になるなどMoore-Penroseの一般化逆行列の説明については例えば竹内 (1974)
第３章を参照されたい。ここでは説明変数行列XについてA = X

′
X, ranl(X) = nの

ときは A+ = X‘′(XX
′
)−1(XX

′
)−1Xとなることを利用する。（A+ はMoore-Penrose

の一般化逆行列の条件を満たしていることが分る。）
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(注意１) γ < 1ならバイアスは存在せず γが大きくなると 1で分散は発
散する。γ > 1のときにはシグナル・ノイズ比 c = r2/σ2に依存して結果
が変わる。もし c ≤ 1なら γ > 1が増大するにつれてリスクは単調に減衰
する。しかし c > 1のときにはバイアスと分散のトレードオフが登場、γ

が増大するとき局所最小解 (γ∗ =
√
c/(

√
c− 1)) が存在する。

ここで直観的にはX
′
X/n

p→ M (p× p) なら tr[(X
′
X/n)−1]

p→ tr[M−1] ∼
p/(n− p) であるから、適当な条件の下で tr[(X

′
X/n)−1] ∼ tr[M−1] とな

りそうであるが、次元 p(n)が nとともに増大して xi (i = 1, · · · , n)が確
率的に変動する場合には以下で示すように正確に評価する必要がある。

(注意２) 定理 1は興味深い結果であるが、定理 1とその拡張のHastie et

al.(2022a)による証明ではRandom Matrix Theory(確率的行列論)の一般
的結果およびHastie et al.(2022b), Knowles and Yin (2017)による最新の
結果などが必要となる。
また数理的に一般化にする（例えば定理 1の一般化）にはHastie et al.

(2022b)で詳しく説明しているように RMT(Random Matrix Theory, 確
率的行列論) の長い議論が必要となるので定理 2の重要な論点のみを補論
で言及する。

(注意3)簡単な場合として、γ < 1のとき説明変数ベクトルxi(i = 1, · · · , n)
が多次元正規分布Np(0,Ω)にしたがうと仮定すれば, 逆ウイッシヤ―ト
分布の性質 (例えばAnderson (2003) p.273, Lemma 7.7.1)より

E[(
n∑

i=1

xix
′

i)
−1] = E[(X

′
X)−1] =

1

n− p− 1
Ω−1 (9)

を利用して類似の結果が証明できる。(ここでΩ > 0を仮定する)。ここ
でΩ = Ipとおき、行列の traceを求めると p/(n− p− 1) ∼ γ/(1− γ)が
導けることが鍵となる。

このことから正規性を仮定すると次のようなに確率収束の意味ではある
が、統計的多変量解析による初等的に証明することが可能である。問題
の理解に有用と考えられるので本稿の数理的補論にその証明を与えてお
く。また補論の議論から明らかなように、説明変数についての正規性の
仮定はさらに緩めることが可能である。

定理 1
∗

: 誤差項は i.i.d.系列, 条件 (I),(II)を仮定, xi (i = 1, · · · , nは
i.i.d.系列 xijは互いに独立なN(0,1) にしたがうことを仮定する. p/n →
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γ (γ ≥ 0) ( n → ∞)とする。
(i) γ < 1のとき

RX(β̂;β)
p→ σ2 γ

1− γ
, (10)

(ii) γ > 1のとき

RX(β̂;β)
p→ r2(1− 1

γ
) + σ2 1

γ − 1
. (11)

(注意 4) 定理１の範囲では c ≤ 1であればリスクは σ2より大きくなる。
Hastie et al. (2022a) はリッジ回帰 (Ridge Regression)推定、xiに共分散
構造がある場合、線形モデルがmisspecifiedである場合、非線形性などの
場合、などをかなり包括的に検討している。設定されている線形回帰モ
デルが誤っている (misspecified)場合には, ある意味では当然の結果とは
いえるが、γが大きくなる時にノルムを最小化する推定に基づく予測のリ
スクが単調に減衰する場合もあり得ることが示されている。ただし高次
元モデルの場合、予測誤差の挙動を系統的に分析するには RMTが利用
する必要があるのでかなり困難な問題となる。数理的付論では一つの結
果について言及しておくが、本稿の主な目的は「過適合と二重降下現象」
であるので詳細な議論は省略する。

(注意5) Hastie et al. (2022a)では誤差項の分散σ2 (> 0)が一定,説明変数
ベクトル xi (i = 1, · · · , nの分散共分散が均一の場合 (isotropic features),

不均一かつ相関構造のある場合 (correlated features)の場合を固有値の挙
動を利用して詳しく分析している。必ずしも誤差項が i.id.にしたがうと
は限らない場合の議論は今後の課題と思われる。

3 シミュレーション実験

3.1 シミュレーション１

Hastie et al. (2021, ISLR (2021)とも呼ぶ)10章では真のモデルが Y =

sin(X) + ϵ , X ∼ U [−5,+5] , ϵ ∼ N(0, 0.33) として n = 20として 3次ス
プライン関数をフィットすると二重降下現象が確認できることを説明して
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いる。我々は少し拡張して統計モデル

Y = a sin(X + c) + ϵ , X ∼ U [−h,+h] , ϵ ∼ N(0, σ2) (12)

を利用する。ここで a, cを様々な値に設定することでHastie et al. (2021)

の主張を確認する。ISLR (2021)では a = 1, c = 0, n = 20, h = 5, σ = 0.3

の場合の結果を Interpolationにおけるdouble decent現象の典型例として
説明している。ここで右辺第 1項は sin(x + c) =

∑∞
n=0

(−1)n

(2n+1)!
(x + c)2n+1

であるから、真の回帰関数は無限次の多項式（滑らかな関数）である場
合にスプライン関数による回帰を利用したデータ分析を行う状況に対応
する。
まずHastie et al. (2021)による n = 20としてX の自然スプライン関数
(natural spline)をフィットすると二重降下現象が確認できるという主張
の再現を試みた。データ数 n=20, スプライン関数は 3次関数 (パラメター
4)であり端点での制約条件 (パラメター数 4)を説明変数の knot結節点数
をKとすると定数項 1より yi = β0 +

∑K+3
j=1 βjb(xi) + ui (i = 1, · · · , n) と

云う形式の回帰モデルになる。3次スプラインの場合は 1, x, x2, (x − ξ)3

(ξは結節点)であるが端点に natural splineの制約がある。
ここでデータ数 n, パラメター数は d = K +4− (4− 1) = K +1、自由
度 (degrees of freedom)はn−dとなる。（ISLRのPage 299参照。) d < n

の場だけでなく d = n,d > nの場合も検討する。d < nの場合は p → nと
すると予測誤差が急速に増大、d > nのときには予測誤差が減衰したのち
また増大、最小二乗推定によるフィットの図と予測誤差の幾つかの図を付
論Bに示しておく。
付論Bに掲載した図より次のような事項が観察される。

(i) X ∼ U [−h,+h], h = 5として dを大きくとるとしばしば推定スプライ
ン関数が途中で発散的な挙動を示すことが生じる。これは離散的なノー
ドがたまたまま隣接して観察されたとき、多項式でフィットしようとする
ために生じると考えられる。そこでフィットするモデルを固定してデータ
数を増加させてみたのが図 1と図２である。予想通り、データ数を増加
すると予測値は安定し、データ数を増加すると予測誤差が減少すること
が観察される。
(ii) データ数を固定してパラメター数 dを増大するシミュレーションを
行って見た結果が図 3である。d > nの場合には観測データは完全フィッ
トとなる。この時に予測誤差をプロットしたのが図４である。d → nの
とき予測誤差は発散するが、その後に降下する現象が始まり、図４のよ
うに二重降下の現象が観察されている。
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(iii) 図 5では二重降下現象を漸近的に説明したHastie et al.(2022)の理論
値（定理 1）を (黒)曲線で同時に示した。青線（右上の 0）は複数回のシ
ミュレーションを行った結果のmedianの値を示している。なお、ここで
のシミュレーションの設定は真のモデルは無限次の多項式で表現される非
線形モデルというmisspesifiedの場合なので定理 1(Hastie et al. (2022))

の理論的検討と必ずしも整合的とは言えない。しかし類似の二重降下の
状況は確認できる。
(vi)シミュレーションにおけるd < nの場合の予測誤差の最小化点とd > n

の場合の予測誤差の最小化点の比較は興味深い。前者が後者より小さい
場合は古典的な場合（パラメター数がデータ数より小さい場合）と思わ
れる。例えば図 5からはモデルの設定が正しくない場合に回帰分析を行う
と予測誤差が漸近的評価より小さくなり得ないことを示しているが、一
般的に成立するか更なる検討が必要である。後者が前者より小さくなる
場合はどのように特徴づけられるか、また dを大きくすると限りなく予
測誤差が単調に小さくなる場合が存在するのかは興味深い論点である。

3.2 シミュレーション2

ファイナンス分野では例えば Kelly et al. (2024)の研究が論争的である
のでその主張がどこまで正しいか否かを実験で確かめることは興味深い。
Kelly et al. (2024)では線形回帰モデル y = Xβ + u を仮定している。
ただし彼らの仮定 2・3では独立な説明変数は分散共分散Ψ, tr(Ψ)/pの
有界性、仮定 4では β = (βj) はランダムE(bi) = 0, E[ββ

′
] = b∗,p/pIp、

tr(E(ββ
′
))/p の有界性などを仮定している。この場合、double decentな

現象が起きるが、さらに反転することがないことを主張しているように解
釈できる。したがって、Kelly et al. (2024)の議論はHastie et al. (2022)

の結果とは異なるが、想定している統計モデルの設定は類似しているが、
異なる仮定を含んでいる。

シミュレーション2として定数項なしの線形回帰モデルy
(p)
i =

∑p
j=1 x

(p)
i,j β

(p)
j +

ϵ
(p)
i (i = 1, · · · , n)を利用する。ここで誤差項は E[ϵ(p)] = 0,E[[ϵ

(p)
i [2=

σ2 であるが簡単化の為 N(0, σ2)(σ = 1)とする。係数の数と観測数は
p/n = c, n → ∞, p(n) → ∞,n = 10, 100, 500, · · · , xij ∼ N(0, 1)（i =

1, · · · , n; j = 1, · · · , p(n)）として
(Case 1) β

(p)
j = r/

√
p (j = 1, · · · , p) , i.e.r2 = ∥β∥22,

(Case 2) βj ∼ N(0, r2/p)互いに独立,
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の場合を設定した。シミュレーションにより発生させた traning-dataに対
して最小二乗フィットを行い、さらに test-dataに対して予測誤差を評価し
た。このシミュレーションではCase 1がHastie et al. (2022a)の Isotropic

featureの標準的な場合、Case 2がKelly et al. (2024)の最も単純な場合
に対応する。
付論Bの図 6・図 7はCase 1とCase 2の実験結果を示している。なお、

pが大きい時説明変数 xijのオーダーに注意する必要がある。統計モデル
の分散は

E(y
(p)2
i ) = E

[
p∑

j=1

β
(p)
j Xij

]2

+ σ2 (13)

が対応するので、シミュレーション 2は p(n), nが大きい時にはVar[y] =

r2 + σ2 が対応する。ここで r2はシステマチック部分、σ2はノイズ部分
の貢献である。
さらにXij ∼ N(0, 1/p)として実験した結果を図 8・図 9 に示しておく。

p(n), nが共に大きい時には r → 0となりシステマティック部分の変動が
無視されて、ノイズの貢献が回帰モデルを支配することになる。二つの論
文の一見すると矛盾するような主張の背後の議論に関係する事項であり、
Kelly et al. (2024)の主張に対応するのではないかと解釈できるだろう。

4 若干の考察
本稿で議論している過適合と二重降下現象を巡る問題から幾つかの論

点を議論しよう。
線形回帰モデルにおける過適合と二重降下現象についての研究の経緯、

本稿と異なる高次元確率論を用いたリスク評価についてはBartlett et al.

(2020), Tsigler and Bartlett (2023) が詳しい。高次元の場合のリスクの
上限と下限を導き、説明変数の個数 pと観測数 nが必ずしも比例的でな
い場合にも二重降下現象は起きる条件を示しているという意味ではより
一般的ではあるが、高次元確率論における重要な仮定、確率分布が sub-

exponentialクラスに限定されるという意味では制約的である。
ここで前節で利用した定数項なしの線形回帰モデルy

(p)
i =

∑p
j=1 x

(p)
i,j β

(p)
j +

ϵ
(p)
i (i = 1, · · · , n)を利用して、離散モデルと連続モデルの関係を考察し
よう。離散メッシュi(n) = 1, · · · , nに対し i(n)/n → t, j(p) = 1, · · · , p
に対し j(p)/p → sをとり n, p(n) → ∞となる状況を考える。ここで変数

10



を基準化して y
(p)
i(n)/

√
n = ∆yi(n)/n, x

(p)
i(n),j(p)/

√
n ∼ σxW (∆i(n)/n, j(p)/p),

β
(p)
j = βj(p)/p, σ

2/n ∼ Var(dϵi(n)/n), (1/p) ∼ ∆s とすると、離散近似

(1/
√
n)y

(p)
i =

∑p
j=1(1/

√
n)x

(p)
i,j (1/

√
p)β

(p)
j +(1/

√
n)ϵ

(p)
i により i(n)/n → t,

j(p)/p → sのとき弱収束 (weak convergence)の意味で連続モデル表現

dyt =

∫ 1

0

βsσxẆ(t, s)ds+ σϵdBt (0 ≤ t, s ≤ 1) (14)

が得られルだろう6。ここで詳細な議論は省略するが, Bt (0 ≤ t ≤ 1)は
ブラウン運動、W(t, s) (0 ≤ t, s ≤ 1)は任意の時刻 tに対する（B(t)

とは独立な）柱状ブラウン運動である。こうした表現はあまり見かけ
ないが, yt =

∫ t

0

∫ 1

0
βsσxẆ(t, s)ds + σϵBt と表現すると連続時間では

E[Ẇ(t, s)Ẇ(t
′
, s)] = dt よりVar[yt] = σ2

x

∫ 1

0
β2
sds + σ2

t , σ2
t = tσ2

ϵ (0 ≤
t ≤ 1)が得られる。

5 おわりに
伝統的な回帰分析で想定している条件 p << nから一旦離れて、p > n

の場合 (過学習, overparametrizationの場合と呼ばれている)を考察する
と、過学習における二重降下 (double decent)現象が観察される。このと
き回帰モデルにおける説明変数の数 p(n)の選択問題なども再び浮上して
くる。例えば予測誤差をデータから推定した基準を最小化することがど
の様な状況で有用なのか、などを理解する必要があるだろう。しかしな
がら p > nの場合には p < nの場合と異なる解決すべき幾つかの統計的
問題も浮かび上がってくる。画像解析や大規模言語モデルなど原理的に
nが非常に大きくとれる工学的応用に限らず、例えば近年のミクロ経済分
析などでは多数のダミー変数を利用することなどが行われているので本
稿の議論は様々な応用に置いてあながち意味のないこととは云えないだ
ろう。
過適合と二重降下現象の解明は統計的モデリング,例えばDeep Learning

モデルにおける入力変数の選択、Layer数の決定などに役立つ可能性があ
る。また統計的問題としては説明変数の係数β（p× 1ベクトル）の次元

6舟木・乙部・謝 (2019) を参考としたが、W(t, x) (0 ≤ t, x ≤ 1）はHilbert空間値を
とる確率変数（柱状ブラウン運動, cylindrial Brownian Motion）, Ẇ(t, x) (0 ≤ t, x ≤ 1
）は任意の tにおけるホワイトノイズを意味する。連続値をとる任意の xをとめると t
についてブラウン運動であるが、その存在は数学的には自明ではない。
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が大きく、無限に操作母数 (incidental parameters)の数が大きくなるとい
う統計学における古典的問題に関連している。
本稿では特に線形回帰モデルに絞って二重降下現象にを検討した。近
年に注目されている深層学習は画像認識や大規模言語モデルなど幾つか
の工学分野での応用上での有効性が既に確認されているが, 多くの問題に
おいて多数の母数を含む統計モデルがどこまで有用であるかはなお未知
な部分が少なくない。標本数 nのとき母数 p(n) をどの様にとり選択する
と適合度 (goodness of fitting)ではなく予測精度 (prediction precision) が
向上するか、統計科学ではAIC(赤池情報量規準) を始め長い間議論され
ているがいまだ決定的な結果は得られていない。ここで観察データへの
完全フィッテング, 過適合な統計モデルの利用可能性という新たな問題が
実務的な観点からも浮上している。有限標本理論と共に本稿のような漸
近的な評価, シミュレーション実験などのアプローチからの検討が今後の
議論の一つのきっかけになることを期待したい7。
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付論A:数理的補論

この補論では前節まで述べた幾つかの定理や命題について数理的導出お
よび追加事項を補論として述べておく。

A.1 定理 1∗の証明 :

(I) p × 1ベクトル列 xi (i = 1, · · · , n)が互いに独立にN(0, Ip)にしたが
うとする。Sn =

∑n
i=1 xix

′
iはWishart(n, p, Ip)にしたがう。1S−1

n の対角
要素、非対角要素の分布は対称性から同一であるから期待値は c1, c2がと
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れて E[S−1
n ] = c1Ip + c21p1

′
p となる。(ここで 1

′
p = (1, · · · , 1)とした。)

任意の直交行列QにたいしてQE[S−1
n ]Q

′
= E[S−1

n ] であるから c2 = 0と
なる。次にAnderson (2003)のTheorem 5.2.2(HotellingのT統計量の導
出)の証明より例えば [1 + (p− 1)]× [1 + (p− 1)] に分割して

S−1
n = [

s11n s
′
1n

s1n S22n

]−1

とおくと対角成分 (1,1)要素は V = s11n − s
′
1nS

−1
22ns1n の逆数の分布に

一致する。V ∼ χ2(n − (p − 1)）より Gamma分布の性質を利用すると∫∞
0

v−1c(m)v(m−2)/2e−v/2dv =
∫∞
0

c(m)v(m−2−2)/2e−vdv = c(m)/c(m −
2) = 1/(m − 2) （ただしm = n − (p − 1), (c(m) = 1/2m/2Γ(m/2))）
となる。同様に

∫∞
0

v−2c(m)v(m−2)/2e−v/2dv =
∫∞
0

c(m)v(m−2−4)/2e−vdv =

c(m)/c(m− 4) = 1/[(m− 2)(m− 4)] であるから, 自由度m = n− (p− 1)

より

E[V −1] =
1

n− p− 1
, E[V −2] =

1

(n− p− 1)(n− p− 3)

となるので

Var[V −1] =
2

(n− p− 1)2(n− p− 3)
<

2

(n− p− 3)3

が得られる。
次に p × p行列An = (1/n)

∑n
i=1 xix

′
i = (aij), A

−1
n = (aij) とする。こ

こで

1

n
tr(A−1

n )− p

n

1

1− γ
=

p

n
(
1

p
)

p∑
i=1

[(aii − E(aii)) + (E(aii)− 1

1− γ
)]

を評価する。
(i)n → ∞のときE[aii] = n/(n− p− 1) → 1/(1− γ),

(ii)

Var[
1

p

p∑
i=1

(aii − E(aii)] = (
1

p
)2

p∑
i,j=1

E[(aii − E(aii))(ajj − E(ajj)]

≤ (
1

p
)2

p∑
i,j=1

[Var[(aii)Var(ajj)]1/2
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である。
Anは i.i.d.の仮定の下で対称であるからn → ∞ (p → ∞)のとき 1

n
tr(A−1

n )−
p
n

1
1−γ
は 0に確率収束する。

(II) 0 < γ＜ 1 のときには既に求まったので、1 < γのときを扱う。

補題 A.1 : 固有値 si = λi(X
′
X) (i = 1, · · · , n), ti = λi(XX

′
) (i =

1, · · · , n)とすると、ゼロでない固有値について
∑n

i=1(1/si) =
∑n

i=1(1/ti)

となる。

(補題A.1の証明) (i) n× p (n ≥ p)行列Aとする。(n + p)× (n + p)分
割行列 (例えばAnderson (2003)のTheorem A.3.2) について関係

| λIn A

A
′

Ip
| = |λIn −AA

′||Ip|

= |λIn||Ip −A
′
(λIn)

−1A| = λn−p|λIp −A
′
A|

より二つの行列のゼロでない固有値が一致することが分かる。
p ≥ nのときは nと pを交換すれば (i)に帰着できる。
（Q.E.D.）

行列X
′
Xの固有値が行列XX

′
に一致する (Singlar Value Decompotion)

ので tr(E[(XX
′
)−1]) = [1/(p−n−1)]tr(In)よりn/(p−n−1) ∼ 1/(γ−1)が

求まる。すなわち, 固有値 si = λi(X
′
X) (i = 1, · · · , n), ti = λi(XX

′
) (i =

1, · · · , n) とすると、ゼロでない固有値は
∑n

i=1(1/si) =
∑n

i=1(1/ti) より

σ2Tr[(
n∑

i=1

xix
′

i)
+] = σ2

n∑
i=1

1

si

= σ2

n∑
i=1

1

ti

∼ σ2n

p
/[1− n

p
] =

σ2

γ − 1

となる (補題A.1を参照)。バイアス部分は

BX(β̂,β) = β
′
[Ip − (X

′
X)+(X

′
X)]β (A.15)

よりE[Bx(β̂,β)] = r2(1− n/p) を次のようにすると導ける。任意の直交
行列Uと単位ベクトルを用いてはUβ = rei (i = 1, · · · , p), r2 = β

′
βと
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する。このときE[β
′
(X

′
X)+(X

′
X)β] = r2E[e

′
iU

′
(X

′
X)+(X

′
X)Uei]

より (1/p)
∑p

i=1[··]をとると (1/p)E[tr(X
′
X)+(X

′
X)] = n/p となるから

である。
(Q.E.D.)

A.2. 定理 1∗についての考察 :

定理 1∗における主張は説明変数が確率的な場合、必ずしも多次元正規分
布とは限らなくても成立する。
例えば, 説明変数の積率条件 E[x4

ij] < ∞ が一様に成立することを仮
定しよう。任意の i (i = 1, · · · , nについてKn = p − 1として (1 + Kn)

ベクトル xi = (yi, z
′
i)

′
に分割、y = (yi), Z = (z

′
i), PZ = Z

′
(Z

′
Z)−1Z

(rank(P) = Kn)とする。このときPZは射影行列であるからE[y
′
PZy] =

Kn, E[(y
′
PZy)

2] = κ4

∑n
i=1 E[p

2
ii] +K2

n + 2Kn より
Var[y

′
PZy] = κ4

∑n
i=1E[p

2
ii]+2Kn となる。（ここで κ4 = E[x4

ji]−3とす
る。）この項はO(Kn)である。同様にVar[y

′
(Ip−PZ)y] = κ4

∑n
i=1E[(1−

pii)
2]+2(n−Kn)よりO(n−Kn)となる。したがって (1/n)y

′
(Ip−PZ)y−

(1− γ) → 0 (n → ∞) となる。( 1
n
)y

′
(Ip −PZ)y → 1− γ (> 0) (n → ∞)

であるから n → ∞のとき

[(
1

n
)y

′
(Ip −PZ)y]

−1 − 1/(1− γ) =
−( 1

n
)y

′
(Ip −PZ)y + (1− γ)

(1− γ)( 1
n
)y′(Ip −PZ)y

p→ 0

となる。これより 1
n
tr(A−1

n ) − p
n

1
1−γ
は 0に確率収束することが期待でき

る。
なおここでの直観的な議論は数理的には p, nは同時に大きくなる状況で
の追加の議論が必要である。
また現時点では多くの応用統計家にとり確率行列 (RMT)の理論は自明
とは云えない。説明変数の分散分散行列Σが単位行列に比例するとは限
らない場合は分析が複雑になるが初等的な分析も望まれる。4節で言及し
た連続過程での近似も課題である。

A.3. RMTとHastie et al.(2022a)の定理 2について :

ランダムな非負定符号行列 A（p × p）の固有値 λj (j = 1, · · · , p) と
すると固有値の経験分布 ESD(empirical specral distribution) は FA =

(1/p)
∑p

j=1 δλj
で与えられる。(ここで δλはデラック記号を意味する。)有

限測度µのStietjes Transform (or Cauchy Transform)はsµ(z) =
∫

1
x−z

µ(dx)
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(z ∈ C\Γµ) (Γµは µのサポート) で定義され、

sA(z) =

∫
1

x− z
FA(dx) =

1

p
Tr(A− zI)−1 (A.16)

で与えられる。ここで次元 pが nに比例する高次元の場合には多変量解
析の通常の議論を修正する必要があるが、理論的分析に有用なスティル
チェス変換 (Stietljes Transform) と逆変換については Yao, Zheng, and

Bai (2015)の 2.2節 (Theorem 2.7など)が分かり易い。実軸上の有限測度
µに対して Stieltjes変換は Sµ(z) =

∫
1

x−z
µ(dx) (z ∈ C\Γµ) で定義され

るが, Hermite行列Aに対して (A.14)で与えられる。また、確率行列論
（random matrix theory, RMT)におけるMarchenko-Pastur分布など基本
的な内容は例えばBai and Silverstein (2009)が解説している。

互いに独立な確率変数ベクトルから作られる p× p ランダム行列 Sn =

(1/n)
∑n

i=1 xix
′
iに対してスティルチェス変換 (Stietljes Transform)をsn(z) =

(1/p)tr[Sn − zIp]
−1 とすると、E[sn(z)]が満たす方程式は p/n → y > 0

のとき s(z) = 1/[1 − z − (y + yzs(z))]となる。特に z = 0とすると
s(0) = 1/(1 − y)が得られるので p/n ∼ γより極限は yを γ に変更して
(p/n)(1− y) ∼ γ/(1− γ)となる。

ここで説明変数ベクトル x(p × 1) の分散共分散行列Ω, x = Ω1/2zとな
る場合を考察しよう8。Ωは非負定符号行列であるからΩ =

∑p
i=1 siviv

′
i

(s1 ≥ s2 ≥ · · · sp ≥ 0)と固有値分解する。ここで二つの確率分布を

Ĥn(s) =
1

p

p∑
i=1

1{s≥si} , Ĝn(s) =
1

∥β∥22

p∑
i=1

< β,vi >
2 1{s≥si} (A.17)

で定める。
さらに c0 = c0(γ, Ĥn)を方程式

1− 1

γ
=

∫
1

1 + c0γs
dĤn(s) (A.18)

を満たす正定数とする。Hastie et al. (2022a)は定理 2(Theorem 2)とし
て nと pが共に大きく比例的であり、固有値の有界性などを仮定すると、

8ここで確率変数ベクトル zはE[z] = 0, E[zz
′
] = Ir (0 < r ≤ pを満たすとする。な

おHastie et al. (2022a, b)では xiの分散共分散行列に対して記号Σを利用しているが,
混乱を避ける意味で (9)を含め記号Ωを利用した。
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予測誤差のバイアスと分散はそれぞれ漸近的に

B = ∥β∥22[1 + γc0

∫
s2

(1+c0γs)2
dĤn(s)∫

s
(1+c0γs)2

dĤn(s)
]

∫
s

(1 + c0γs)2
dĜn(s) (A.19)

および

V = σ2γc0[

∫
s2

(1+c0γs)2
dĤn(s)∫

s
(1+c0γs)2

dĤn(s)
] (A.20)

で与えられることを示している。導出は確率行列論（RMT)における標本
分散共分散行列の極限に関するかなり込入った議論（証明の詳細はHastie

et al. (2022b)に与えられているが,鍵となるのは Knowles and Yin (2017)

によるAnisotropic local law（異方的局所法則)と呼ばれる数理的結果で
ある）が必要となる。ただし定理 1のように結果を分布を解析的に表現
することは困難であり, 上のような積分表現で与えられる.

ここで説明変数ベクトル x (p× 1)の分散・共分散行列がΩ = Ip のと
き、Ĥn(s) = Ĝn(s) = 1 (s = 1)より 1 − 1/γ = 1/[1 + c0γ] であるから
1 + c0γ − 1/γ − c0 = 1, c0 = 1/[γ(γ − 1)] となるので γc0 = 1/(γ − 1),

(1+ γc0)/(1+ γc0)
2 = (γ− 1)/γ となる（ここで c0 > 0は γ > 1を意味す

る）。したがってB = ∥β∥22(1− 1/γ) および V = σ2/(γ − 1)より γ > 1の
時の定理１の結果に一致することが確認できる。
なお 0 < γ < 1の場合には分散共分散行列Ω = Ipであるので c0 < 0

(Hastie et al. (2022a)の (12)式)となる。したがって,この場合にはHastie

et al. (2022a)の定理 2の公式は成立しないことから、定理 2などの結果
については主張は若干の修正 (例えば論文の中で利用している記号 c0の
定義など) が必要と思われる。

付論B：関連する図

この付論Bではシミュレーションの結果の図を掲載する。プログラムは
Pythonにより新たに開発した。
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図 1: (最小二乗フィット１) パラメータ数を d = 20 に固定した 3次スプ
ライン回帰モデルに対し、学習サンプル数 n を変化させたときの推定関
数の比較。黒破線は真の関数 f(x) = sin(x)、点はノイズ付き学習データ
を表し、各パネルは異なる nに対応している。
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図 2: (最小二乗フィット 2) 3次スプライン回帰モデルにおける学習サン
プル数 n に対するテスト平均二乗誤差（MSE）の依存性。テスト誤差は
真の関数 f(x) = sin(x) に対して評価した。縦軸および横軸は対数スケー
ルで表示している。破線は学習サンプル数がパラメータ数が等しくなる
点（n = d = 20）。
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図 3: (最小二乗フィット 3) ノイズを含む学習データ（観測数 n = 20）に
対して、パラメータ数 d の異なるキュービックスプライン回帰モデルを
適用した際の推定関数の比較。黒破線は真の関数 f(x) = sin(x)、点はノ
イズ付き学習データを表し、各パネルは異なるパラメータ数 d に対応し
ている。
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図 4: (二重降下現象 1) 3次スプライン回帰モデルにおけるパラメータ
数 d に対するテスト平均二乗誤差（MSE）の依存性。テスト誤差は真の
関数 f(x) = sin(x) に対して評価した。縦軸および横軸は対数スケール
で表示している。破線は学習サンプル数がパラメータ数と等しくなる点
（d = n = 20）
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図 5: (二重降下現象 2) 3次スプライン回帰モデルにおけるパラメータ数
d に対するテスト平均二乗誤差（MSE）の挙動。各 dに対するテスト誤
差は、学習データを独立に再サンプリングした 1000回の反復計算の中央
値を用いて評価した。破線は学習サンプル数とパラメータ数が等しくな
る点（d = n）。黒実線は、d < n の領域におけるMSEの理論値 (Hastie

et al. (2022a))。
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図 6: (二重降下現象 3) 線形回帰モデル y = Xβ + ε における説明変数次
元とサンプルサイズの比 c = p/nとテスト平均二乗誤差（MSE）の関係。
回帰係数 β は固定，ユークリッドノルムが ∥β∥ = r となるよう正規化し
ている。説明変数行列 X の各成分は独立にXij ∼ N (0, 1) に従い，誤差
項は ε ∼ N (0, σ2I) とした。各曲線は異なる信号強度パラメータ r に対
応し，点は複数回の独立試行に基づくテスト MSE の標本平均，エラー
バーはその標準誤差を表す。縦の点線は説明変数次元とサンプルサイズ
が等しくなる点（p = n）。縦軸は対数スケールで表示している。
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図 7: (二重降下現象 4) 説明変数次元とサンプルサイズの比 c = p/n とテ
スト平均二乗誤差（MSE）の関係。図 6と同様の線形回帰モデルを，用
い説明変数行列Xij ∼ N (0, 1) も同様に生成するが，各試行ごとに回帰係
数 β をランダムに生成し，そのユークリッドノルムが ∥β∥ = r となるよ
う正規化している。その他の表示方法，評価手法，および記号の定義は
図 6と同一。
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図 8: (二重降下現象 5) 説明変数次元とサンプルサイズの比 c = p/n とテ
スト平均二乗誤差（MSE）の関係。図 6と同様であるが，本図では説明
変数行列の各成分を 1/

√
p で正規化している。
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図 9: (二重降下現象 6) 説明変数次元とサンプルサイズの比 c = p/n とテ
スト平均二乗誤差（MSE）の関係。図 7と同様であるが，本図では説明
変数行列の各成分を 1/

√
p で正規化している。
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