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Abstract

Statistical analysis of inter-variable relationships in multivariate time series
was initiated by Akaike (1968, 1971) at the Institute of Statistical Math-
ematics, where methods such as RPC (Relative Power Contribution) were
developed for engineering applications. In the field of econometrics, vector
autoregressive (VAR) analysis has evolved since the seminal works of Granger
(1969) and Sims (1980), with further developments including the decomposi-
tion proposed by Pesaran and Shin (1998), Diebold and Yilmaz (2012, 2014),
and Barunik and Krehlik (2018). This paper sheds some new lights on the
limitations of existing methods regarding correlations among innovation vari-
ables, and proposes the use of decomposition of the predictive spectral density
matrix with finite prediction horizon. The practical utility of this approach
is discussed.
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1. Introduction

Statistical analysis of multivariate time series data has been conducted for quite
some time as an application of statistics. In engineering, statistical methods based
on Multivariate Autoregressive (MAR) models were developed, notably by Akaike
(1968, 1971). At the Institute of Statistical Mathematics, Hirotsugu Akaike not
only developed the TIMSAC software for statistical computation of multivariate
time series with feedback, but also achieved applied success in addressing significant
engineering problems at the time in Japan, such as controlling cement kilns and
ship trajectories 1. Statistical techniques including the Relative Power Contribution
(RPC) method played an important role in these developments. Some of these
methods are discussed, for example, in Kitagawa (2021).

In econometrics, the contribution of Sims (1980) is particularly influential. He
proposed using vector autoregressive (VAR) models for macroeconomic analysis as
an alternative to the then-dominant structural econometric models. Since then, a
large body of research has emerged. In applied econometric analysis, decompositions
based on impulse responses (hereafter IR) of forecast error variance have become
especially important. In this context, Pesaran and Shin (1998) proposed the Gener-
alized Impulse Response (GIR), which was later used in applied econometric studies
developed by Diebold and Yilmaz (2012, 2014), Barunik and Krehlik (2018), and
Zhang and Hamori (2021) among others, for analyzing spillover effects of financial
volatilities due to innovation shocks.

The concept of Granger causality (G-causality), introduced by Granger (1969),
has become central in the statistical analysis of multivariate economic time series.
A number of statistical tests of G-causality have been developed. Debates and
developments surrounding G-causality in econometrics are discussed in works such
as Geweke (1982, 1984), Dufour and Taamouti (2010), and Hosoya et al. (2017),
which explore various theoretical aspects of causality measures. For foundational
references on statistical prediction theory and spectral decomposition in stationary
multivariate time series, we refer to Hannan (1970) and Brockwell and Davis (1990);
for time series econometrics, Hamilton (1994).

This paper first investigates the statistical properties of the Pesaran-Shin de-
composition (hereafter referred to as PS decomposition), which has been applied in
some econometric analysis. We also discuss the methodology employed by Diebold
and Yilmaz (2012, 2014). Furthermore, we explore Akaike ’s RPC decomposition
(1968), which was implemented in TIMSAC, to assess its relation to the PS decom-
position and its applicability and limitations. We consider how this relates to prior
discussions surrounding G-causality.

1TIMSAC is available at https://www.ism.ac.jp/computer_system/jpn/software/softw
are01.html or a package at https://cran.r-project.org/web/packages/timsac/index.html

2



We aim to provide a unified interpretation of various forms of innovation-based
decomposition in multivariate time series: including IR, GIR, PS decomposition,
spectral decompositions (e.g., Akaike’s RPC), and forecast error variance-covariance
decompositions (causality measures). Moreover, we propose a new concept termed
predictive spectral density, derived from the Fourier transform of forecast errors
with finite horizon. This concept not only helps organize the previously fragmented
discussions but also opens up new possibilities including statistical analysis of co-
integrated processes for practical applications.

The structure of this paper is as follows: Section 2 introduces the multivariate
stationary AR (or VAR) models. Section 3 describes the Pesaran-Shin decomposi-
tion, followed by Section 4 on the spillover effects defined by Diebold and Yilmaz.
Section 5 explains a general error decomposition approach via spectral decomposi-
tion of multivariate AR models. Section 6 discusses causality measures in the sense
of Granger causality, including those discussed by Hosoya et al. (2017) in a sys-
tematic way. Then, Section 7 define the predictive spectral density and its use in
multivariate AR modeling. Section 8 provides numerical illustrations and empirical
data analysis (and the related decomposition figures are given in the appendix). Fi-
nally, Section 9 offers concluding remarks and provisional observations on key issues
discussed throughout the paper.

2 Multivariate Stationary AR Processes and Fore-

cast Error Decomposition

We consider an m-dimensional (discrete-time) stochastic process xt = (xkt) for k =
1, . . . ,m and t = 1, . . . , T , with m ≥ 2, under the assumption of weak stationarity.
Throughout this section, we follow the notation of Pesaran and Shin (1998). Suppose
that the process xt satisfies the vector autoregressive (VAR) model:

xt =
p∑

s=1

Φsxt−s + ϵt,(2.1)

where the innovation term (or noise term) ϵt is an i.i.d. sequence of random vectors
such that E(ϵt) = 0 and E(ϵtϵ

′
t) = Σ. We assume that Σ is positive definite and

the stochastic process is of full rank.
If the weakly stationary process xt satisfies the following condition : (A) all roots

of the characteristic equation |Imλp −∑p
s=1 Φsλ

p−s| = 0 have modulus strictly less
than one, then xt admits the following causal moving average (MA) representation:

xt =
∞∑
s=0

Asϵt−s,(2.2)

where A0 = Im and, due to weak stationarity,
∑∞

s=0 ∥As∥2 < ∞.
Given the information available up to time t, the optimal H-step ahead forecast
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xt+H|t (for H ≥ 1) is given by the conditional expectation

xt+H|t = E[xt+H |xt,xt−1, . . .] =
∞∑

s=H

Asϵt+H−s.

Hence, the mean squared forecast error is

E
[
(xt+H − xt+H|t)(xt+H − xt+H|t)

′
]
=

H−1∑
s=0

AsΣA′
s.(2.3)

Letting H → ∞, we obtain the unconditional variance-covariance matrix 2

Γ(0) = E[xtx
′
t] =

∞∑
s=0

AsΣA′
s.(2.4)

Let P be an m×m matrix (typically a triangular matrix) such that P−1ΣP−1′ =
Im, equivalently, Σ = PP′. Define the transformed noise process ut = P−1ϵt, then
E(utu

′
t) = Im.

In the traditional (econometric) VAR analysis, from

xt =
∞∑
s=0

AsP
(
P−1ϵt−s

)
,

the variance of the k-th component (k = 1, . . . ,m) is expressed as

γkk =
∞∑
s=0

e′kAsP

 m∑
j=1

eje
′
j

P′A′
sek =

m∑
j=1

∞∑
s=0

(e′kAsPej)
2
,(2.5)

where ej denotes the m× 1 vector with 1 in the j-th entry and zeros elsewhere.
Each term on the right-hand side, e′kAsPej, depends in general on the ordering of
variables. Therefore, the variance decomposition and the IR measure are sensitive
to variable ordering selected in the statistical analysis, which is often subjective,
unless Σ is diagonal 3.

2Let f(λ) denote the m×m spectral density matrix in (5.19). Then,

Γ(0) =

∫ π

−π

f(λ) dλ, f(0) =
1

2π

[ ∞∑
s=0

As

]
Σ

[ ∞∑
s′=0

A′
s′

]
.

In particular, the variance of the k-th variable (the (k, k)-th element of Γ(0)) can be expressed as
the integral of the spectral density function fkk(λ), i.e., as the sum of power across frequencies.
(See Section 7 for further discussion.)

3This issue is closely related to discussions surrounding structural equations, simultaneous equa-
tion systems, and structural VAR models in economic time series analysis. For classical treatments,
see Chapter 11 of Hamilton (1994) or Chapter 1 of Hosoya et al. (2017).
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3 Pesaran-Shin Decomposition

Let the regression coefficient with respect to the k−th (k = 1, · · · ,m) innovation
term be defined as βk = E(ϵt|ϵkt = δk). Pesaran-Shin (1998) developed the GIR
and their decomposition based on the difference of two conditional expectations.
Since the multivariate AR model is linear in the noise terms, it follows from the
conditional expectation that

E[xt+H |ϵkt = δk,xt−1,xt−2, · · ·]− E[xt+H |xt−1,xt−2, · · ·] = AHβk.(3.6)

In particular, if ϵt ∼ Nm(0,Σ), then βk = [Σek/σkk]δk.
We have the standard representation as

xt =
∞∑
s=0

AsΣ(
m∑
j=1

eje
′

j)Σ
−1ϵt−s(3.7)

=
m∑
j=1

{ ∞∑
s=0

AsΣeje
′

jP
′−1(P−1ϵt−s)

}

and

E[xtx
′

t] =
∞∑
s=0

AsΣ
m∑
j=1

(eje
′

j)A
′

s.(3.8)

The variance of the k-th component is then decomposed as

γkk =
m∑
j=1

∞∑
s=0

e
′

kAsΣej(e
′

jA
′

sek)(3.9)

=
m∑
j=1

∞∑
s=0

[
e

′
kAsΣej√

σjj

] [
e

′

kAsej
√
σjj

]

=
m∑
j=1

∞∑
s=0

[
e

′
kAsΣej√

σjj

]2 e
′
kAsej

√
σjj

e
′
k
AsΣej√
σjj


The terms on the right-hand side are invariant to variable ordering, but they are
not necessarily non-negative.

In particular, when Σ = σ2Im, we have

γ∗
kk =

m∑
j=1

∞∑
s=0

[
e

′
kAsΣej√

σjj

]2
.(3.10)

More generally, for Σ = σ2Im + o(1), it follows that γkk − γ∗
kk = o(1), leading to

Proposition 1 below.
Let xt(H) =

∑H−1
s=0 Asϵt−s. Then, insted of (2.2), the corresponding expressions

for the variance-covariance matrix of the H-step ahead forecast error at time t−H.
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Since the forecast error variance depends on H, we denote it by γkk(H) and γ∗
kk(H).

In the L2 sense, as H → ∞, ∥xt(H)−xt∥ → 0, thus γkk(H) → γkk and γ∗
kk(H) → γ∗

kk

for k = 1, · · · ,m.
Next, for any k (k = 1, · · · ,m), define β∗

k = Σek/σkk, and consider the decom-
position of the innovation at time t:

ϵt = β∗
ke

′

kϵt + [Im − β∗
ke

′

k]ϵt.(3.11)

The two terms on the right-hand side are uncorrelated since

E
[
β∗

ke
′

kϵtϵ
′

t(Im − ekβ
∗′
k )

]
= β∗

ke
′

kΣ(Im − ekβ
∗′
k ) = O.

Thus, the covariance matrixΣ can be decomposed asΣ = β∗
kβ

∗′
k σkk+

[
Σ− β∗

kβ
∗′
k σkk

]
.

Now consider the use of the non-negative definite matrix

Σ∗ =
m∑
j=1

β∗
jβ

∗′
j σjj .(3.12)

Note, however, that this matrix is not generally the covariance matrix of the random
vector u

(m)
t =

∑m
j=1 β

∗
je

′
jϵt. For the random vector u

(q)
t =

∑q
j=1 β

∗
je

′
jϵt (1 ≤ q ≤ m),

its covariance matrix is

E[u
(q)
t u

(q)′

t ] = Σ

 q∑
j=1

eje
′
j

e
′
jΣej

Σ
 q∑
j′=1

ej′e
′

j′

e
′

j′
Σej′

Σ(3.13)

= Σ

 q∑
j=1,j′=1

e
′
jΣej′eje

′

j′

e
′
jΣeje

′

j′
Σej′

Σ
= Σ

 q∑
j=1,j′=1

ρj,j′√
e

′
jΣej

√
e

′

j′
Σej′

eje
′

j′

Σ,

where ρj,j′ =
e
′
jΣe

j
′√

e
′
jΣej

√
e
′
j
′Σe

j
′
.

When q = 1, choosing j = k gives the first term of the decomposition

Σ = β∗
kβ

∗′
k σkk +

[
Σ− β∗

kβ
∗′
k σkk

]
.

However, for q ≥ 2, the vectors Σej′ are not necessarily orthogonal, so this does not
correspond to an orthogonal decomposition of the covariance matrix. In particular,

when q = m and ρj,j′ = 0 for all j ̸= j
′
, we have E[u

(m)
t u

(m)′

t ] = Σ. Next, by
expressing the covariance matrix formally as Σ = Σ∗ + (Σ − Σ∗), and using the
formula E[xtx

′
t] =

∑∞
s=0 AsΣA

′
s, we obtain

E[xtx
′

t] =
∞∑
s=0

As

 m∑
j=1

β∗
jσjjβ

∗′
j

A′

s +
∞∑
s=0

As

Σ−
m∑
j=1

β∗
jσjjβ

∗′
j

A′

s.
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Hence, the variance of the k-th component becomes

γkk =
m∑
j=1

∞∑
s=0

e
′

kAsβ
∗
jσjjβ

∗′
j A

′

sek +
∞∑
s=0

e
′

kAs

Σ−
m∑
j=1

β∗
jσjjβ

∗′
j

A′

sek.

The first term on the right-hand side corresponds to γ∗
kk. Let us denote the second

term by γ∗∗
kk, then we can write

γkk = γ∗
kk + γ∗∗

kk.(3.14)

The first term corresponds to the Pesaran-Shin decomposition. Although the second
term is not necessarily non-negative, it vanishes when the innovation terms are
uncorrelated. All the parameters appearing here are computable from data.

The relative contribution of the j-th innovation to the k-th variable in the
Pesaran-Shin sense is given by

θkj =

[∑∞
s=0 e

′
kAsΣej/

√
σjj

]2
∑m

j=1

[∑∞
s=0 e

′
kAsΣej/

√
σjj

]2 × γ∗
kk

γkk
(3.15)

=

[∑∞
s=0 e

′
kAsΣej/

√
σjj

]2
∑∞

s=0 e
′
kAsΣA′

sek
, (j = 1, · · · ,m)

which generally does not satisfy
∑m

j=1 θkj = 1 for each k = 1, · · · ,m. (From a
practical viewpoint, it may be preferable to compute each term explicitly for data
analysis.)

Now, let us consider the eigenvalue decomposition Σ =
∑m

j=1 pjp
′
jλj (assuming

λj > 0). Focusing on the second term, we have

Σ−Σ∗ = Σ

Σ−1 −
m∑
j=1

eje
′
j

e
′
jΣej

Σ = Σ
m∑
j=1

[
pjp

′

j

1

λj

− eje
′

j

1

e
′
jΣej

]
Σ.

Thus, if there exists a constant c > 0 such that λj = cσjj and ej = cβ∗
j for all

j = 1, · · · ,m, then the second term vanishes. When all cross-correlations are small,
it holds approximately that ej ≈ cβ∗

j .

4 Spillover Effects

As an application of the previous section, we now consider the econometric method
of spillover effects in asset price volatility using the forecast-error decomposition as
proposed by Diebold and Yilmaz (2012).

Given information up to time t, the mean squared forecast error of the H-step-
ahead forecast at time t is

H−1∑
s=0

AsΣA
′

s.
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Let the diagonal elements of this matrix be denoted as

γkk(H) = γ∗
kk(H) + γ∗∗

kk(H) (k = 1, · · · ,m).

Replacing ∞ with H − 1 in the discussion from the previous section, we obtain the
adjusted Pesaran-Shin contribution ratio for the k-th variable as

θ̃kj(H) =

[∑H−1
s=0 e

′
kAsΣej/

√
σjj

]2
∑m

j=1

[∑H−1
s=0 e

′
kAsΣej/

√
σjj

]2 (j = 1, · · · ,m).(4.16)

In this case, each term is non-negative and satisfies

m∑
j=1

θ̃kj(H) = 1.

Let us further decompose the first term of the variance of the k-th variable ’s
H-step-ahead forecast, γ∗

kk(H), as follows:

γ∗
kk(H) =

m∑
j=1

γ∗
j→k(H) =

m∑
j=1,j≠k

γ∗
j→k(H) + γ∗

k→k(H),(4.17)

where

γ∗
j→k(H) =

∑H−1
s=0 e

′
kAsΣej

σjj

.(4.18)

Then, the adjusted contribution ratio can be written as

θ̃kj(H) =
γ∗
j→k(H)∑m

j=1 γ
∗
j→k(H)

.

Consequently, since
∑m

k,j=1 θ̃kj(H) = m, the total spillover effects proposed by
Diebold and Yilmaz (2012) can be defined as

Sk.(H) =
100

m

∑m
j=1,j ̸=k γ

∗
j→k(H)∑m

j=1 γ
∗
j→k(H)

,

and

S.k(H) =
100

m

∑m
j=1,j ̸=k γ

∗
k→j(H)∑m

j=1 γ
∗
k→j(H)

.

These measures are considered valid when γ∗∗
kk(H) = 0 (i.e., when γkk(H) = γ∗

kk(H)),
or when the second term is sufficiently small. Whether this condition empirically
holds in the measurement of volatility in multivariate financial time series is an
important and interesting issue.
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5 Spectral Decomposition

For weak-stationary processes, the prediction and spctrum theory of vector dicrete
time series using the Hilbert space device have been well-establiehed and see Chap-
ter III of Hannan (1970), for instance. The multivariate AR model of (2.1) and (2.2)
with full rank Σ is a special case of purely non-deterministic processes. A decom-
position of the vector time series in the frequency domain can be conducted. From
the standard representation xt =

∑∞
s=0 AsP(P−1ϵt−s), the spectral density matrix

(of size m×m) is given by

f(λ) =
1

2π

[ ∞∑
s=0

AsPe−isλ

]  ∞∑
s′=0

(As′P)
′
eis

′
λ

(5.19)

=
1

2π

[ ∞∑
s=0

Ase
−isλ

]
Σ

 ∞∑
s′=0

A
′

s′e
is

′
λ

 ,
where i2 = −1.

The (k, k)-th element of f(λ) (k = 1, · · · ,m) is given by

fkk(λ) =
1

2π

m∑
j=1

∣∣∣∣∣
∞∑
s=0

e
′

kAseje
−isλPej

∣∣∣∣∣
2

.(5.20)

Note that this decomposition depends on the choice of P, i.e., the ordering of vari-
ables. In particular, when Σ (and hence P) is a diagonal matrix, i.e., Σ = diag(σjj),
the (k, k)-th element becomes

fkk(λ) =
1

2π

m∑
j=1

∣∣∣∣∣
∞∑
s=0

e
′

kAseje
−isλ

∣∣∣∣∣
2

σjj ,

where each term on the right-hand side is non-negative.
When the noise covariance matrixΣ is not diagonal, the Pesaran-Shin decomposition
allows us to write the spectral density as

fkk(λ) = f ∗
kk(λ) + f ∗∗

kk(λ),(5.21)

where

f ∗
kk(λ) =

m∑
j=1

1

2π

∥∥∥∥∥e′

k

∞∑
s=0

AsΣe−isλej/
√
σjj

∥∥∥∥∥
2

,(5.22)

though the second term is not necessarily non-negative.
If we define

f ∗
kk(λ) =

m∑
j=1

f ∗
j→kk(λ),
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then the relative contribution of each frequency component based on the Pesaran-
Shin decomposition is given by

RPS
j→k(λ) =

f ∗
j→kk(λ)

fkk(λ)
.(5.23)

In addition, the following measures provide useful spectral domain information:

RRPS∗
j→k(λ) =

f ∗
j→kk(λ)

f ∗
kk(λ)

, RRPS
k (λ) =

f ∗
kk(λ)

fkk(λ)
.

Let us now consider connections to Akaike’s Relative Power Contribution (RPC,
1968) and the extensions proposed by Kitagawa et al. (2023). In general, the spectral
density of the k-th variable is expressed as

fkk(λ) =
1

2π

m∑
g,h=1

 ∞∑
s=0

(As cos sλ)kg
∞∑

s′=0

(As′ cos s
′
λ)kh(5.24)

+
∞∑
s=0

(As sin sλ)kg
∞∑

s′=0

(As
′ sin s

′
λ)kh

 σgh.

When g = h, the term in the parenthesis reduces to

∞∑
s,s′=0

(As)kg(As′ )kg cos((s
′ − s)λ) =

∣∣∣∣∣
∞∑
s=0

e
′

kAsege
−isλ

∣∣∣∣∣
2

,

which matches the standard spectral form.
Akaike (1968) defines the RPC as

RRA
g→k(λ) =

1
2π

∣∣∣∑∞
s=0 e

′
kAsege

−isλ
∣∣∣2 σgg∑m

j=1
1
2π

∣∣∣∑∞
s=0 e

′
kAseje−isλ

∣∣∣2 σjj

.(5.25)

Kitagawa, Tanokura, and Sato (2023) proposed the extended RPCs as

RRKTS
g→k (λ) =

1
2π

∣∣∣∑∞
s=0 e

′
kAsege

−isλ
∣∣∣2 σgg

fkk(λ)
,(5.26)

and for g ̸= h,

RRKTS
gh→k(λ) =

1
2π

∑∞
s,s′=0

(As(λ))kg(As′ (λ))kh cos((s
′ − s)λ)σgh

fkk(λ)
.(5.27)

Note that the above notation is slightly different from theirs. Because for g ̸=
h, RRKTS

gh→k(λ) is not necessarily non-negative, it may cause some difficulty in the
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interpretation of decomposition when it is not negligible.
Then, for g, k ∈ {1, · · · ,m},

RPS
g→k(λ)

RRKTS
g→k (λ)

=

∣∣∣∑∞
s=0 e

′
kAsΣe−isλeg/

√
σgg

∣∣∣2∣∣∣∑∞
s=0 e

′
kAsege−isλ

∣∣∣2 σgg

.

Next, we consider the case where the correlations among the innovations are small
―namely, the so-called small-correlation asymptotics. For any covariance matrix,
let

σgh(ρ) = σghδgh + ρωgh (g, h = 1, · · · ,m),(5.28)

where δgh = 1 if g = h and δgh = 0 if g ̸= h.
Under this setting, the following result holds.

Proposition 1: Under the above assumptions, as ρ → 0, for any g, k = 1, · · · ,m,

lim
ρ→0

RPS
g→k(λ) = lim

ρ→0
RRKTS

g→k (λ) = RRA
g→k(λ).(5.29)

In multivariate time series analysis, the contribution of each innovation and the
strength of its spillover effects are not necessarily uniform across frequencies. For
instance, one may need to separately analyze short-term, medium-term, and long-
term frequencies to fully capture the nature of spillover or causality.
Therefore, it is crucial to interpret spectral-domain measures with care. In particu-
lar, when investigating the empirical validity of Proposition 1, the measure

RRPS
k (λ) =

f ∗
kk(λ)

fkk(λ)
(k = 1, · · · ,m)

can serve as a useful diagnostic index.

6 Causality Measures

Several measures of causality related to G-causality have been proposed in the lit-
erature, including those by Geweke (1982, 1984) and Dufour and Taanouti (2010).
Here, we focus on the framework developed by Hosoya et al. (2017) as an example.
Hosoya et al. (2017) propose a one-way causality measure (which we shall refer
to as the Hosoya causality measure), although they do not mention the method of
Pesaran and Shin (1998). In Chapters 2 and 3 of their work, they discuss a variety
of causality measures developed in both the time and frequency domains. In this
section, we examine the connections between the measures introduced so far and
those of Hosoya et al. (2017).
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To simplify the discussion, we consider the case m = 2 (in the notation of Hosoya et
al. (2017), p1 = p2 = 1, p = 2). Using the Pesaran-Shin framework with m = p = 2,
we have:

β∗
1 = Σe1/σ11 =

[
1

σ21/σ11

]
, β∗

1β
∗′
1 σ11 =

[
σ11 σ12

σ12 σ2
12/σ11

]
.

Then, Σ can be decomposed as: Σ = β∗
1β

∗′
1 σ11 +

(
Σ− β∗

1β
∗′
1 σ11

)
. The spectral

density of the first variable is:

f11(λ) =
1

2π

[ ∞∑
s=0

e
′

1Ase
−isλ

]
Σ

 ∞∑
s′=0

A
′

s′e1e
is

′
λ

 .(6.30)

Conditioning on the first innovation variable, we define:

f11.1(λ) =
1

2π

[ ∞∑
s=0

e
′

1Ase
−isλ

] [
β∗

1β
∗′
1 σ11

]  ∞∑
s′=0

A
′

s′e1e
is

′
λ

 .(6.31)

Remark 1: In the more general case where p1 ≥ 1 and p2 ≥ 1 (see Chapter 2 of
Hosoya et al. (2017)), we consider the factorization of the spectral density matrix:

Γ̃(e−iλ) =
∞∑
s=0

Ase
−isλΣ1/2, f(λ) =

1

2π
Γ̃(e−iλ)Γ̃(e−iλ)∗ ,

where Γ̃(·)∗ stands for the complex conjugate. (We usethe notation Γ̃, which is
slightly differerent from Hosoya et al. (2017). It may be straightforward to discuss
their method in the general case, but we omit the details here.)

Remark 2: The conditioning on the specific innovation variable serves to remove
the effect of correlations among innovations, thereby trying to isolate the dynamic
influence between variables. The idea is similar to the PS decomposition when
m = 2.

Now define the one-way causal effect (Hosoya-measure) as:

M̃2→1(λ) = log

[
f11(λ)

f11.1(λ)

]
,

which corresponds to equation (2.26) in Hosoya et al. (2017). The overall causality
measure from series 2 to series 1 is then:

M2→1 =
1

2π

∫ π

−π
M̃2→1(λ) dλ,

matching equation (2.17) in Hosoya et al. (2017). They also proposed related
measures such as the measure of association and measure of reciprocity.
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Remark 3: Rather than directly using M2→1(λ), it may be more intuitive to work
with a modified relative power contribution (MRPC) ratio:

MRPC∗
11.1(λ) =

f11.1(λ)

f11(λ)
,

as this directly reflects the variance decomposition of forecast errors.
By defining

γ11 =
∫ π

−π
f11(λ)dλ, γ11.1 =

∫ π

−π
f11.1(λ)dλ,

we obtain the ratio of predictive variances:

RV11.1 = γ11.1/γ11, (0 ≤ RV11.1 ≤ 1),

ensuring that MRPC∗
1(λ) ≤ 1.

When m = 2 and σ12 = 0, the expression reduces to:

f11.1(λ) =
1

2π

[ ∞∑
s=0

e
′

1Ase
−isλe1

]2
σ11,

which matches the relative power contribution (RPC).
Now consider

f12.1(λ) =
1

2π

[ ∞∑
s=0

e
′

1Ase
−isλ

] [
β∗

2β
∗′
2 σ22

]  ∞∑
s′=0

A
′

s′e1e
is

′
λ

 .(6.32)

In the case of correlated innovations in a multivariate time series model, we can
express the noise covariance matrix as:

Σ = β∗
1β

∗′
1 σ11 +

[
0 0
0 σ22 − σ2

12/σ11

]
= β∗

2β
∗′
2 σ22 +

[
σ11 − σ2

12/σ22 0
0 0

]
.

Also,

β∗
1β

∗′
1 σ11 + β∗

2β
∗′
2 σ22 =

[
σ11 + σ2

12/σ22 2σ12

2σ12 σ22 + σ2
12/σ11

]
,

which equals Σ only when the innovations are uncorrelated. Therefore, in general,
the sum

m∑
j=1

MRPC∗
j(λ) ̸= 1.

Now define

f ∗
11.2(λ) =

1

2π

[ ∞∑
s=0

e
′

1Ase
−isλ

] [
Σ− β∗

1β
∗′
1 σ11

]  ∞∑
s′=0

A
′

s′e1e
is

′
λ

 ,(6.33)
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so that
f11(λ) = f11.1(λ) + f ∗

11.2(λ).

Then define

MRPC∗
12.1(λ) =

f12.1(λ)

f11(λ)
,

so that
MRPC∗

11.1(λ) + MRPC∗
12.1(λ) = 1,

which gives a consistent decomposition.
Our interpretation―unlike Kitagawa et al. (2023)―unifies the innovation-based

decomposition (Pesaran―Shin), spectral decomposition (RPC á la Akaike), and
forecast-error variance decomposition (causality measures), enabling consistent anal-
ysis across these frameworks.

We summarize discussions on multivariate stochastic processes relevant. For a
discrete-time,m-dimensional stationary time series process that is purely non-deterministic
(i.e., regular), there exists a relationship (an extension of Kolmogorov’s formula to
the multivariate case) between the innovation covariance matrix Σ and the spectral
density matrix f(λ):

det(Σ) = exp
[
1

2π

∫ π

−π
log det(2πf(λ)) dλ

]
.(6.34)

This fundamental result is discussed, for example, in Hannan (1970, p.162), in the
context of Wold decomposition for weakly stationary processes.

Remark 4: Suppose the process is given by

xt =
∞∑
s=0

Asϵt−s, E(ϵt) = 0, E(ϵtϵ
′

t) = Σ, E(ϵtϵ
′

s) = O (t ̸= s).

Then the spectral density is given by (5.19). The optimal one-step-ahead forecast
given information up to time t is xt+1|t =

∑∞
s=1 Asϵt+1−s, and the forecast error

is xt+1 − xt+1|t. Normalizing by A0 = Im, the variance-covariance matrix of the
forecast error equals Σ.

7 Use of Predictive Spectral Density

We now introduce the concept of the predictive spectral density, which is based on
the Fourier transform of forecast errors with finite horisons. For a forecast horizon
H ≥ 1 and a multivariate process of dimension m ≥ 2, define the predictive spectral
density matrix fH(λ) as:

fH(λ) =
1

2π

[
H−1∑
s=0

Ase
−isλ

]
Σ

H−1∑
s′=0

A
′

s′e
is

′
λ

 .(7.35)
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This complex-valued matrix has real-valued diagonal entries:

fH
kk(λ) = e

′

kf
H(λ)ek (k = 1, . . . ,m).

This matrix corresponds to the spectral density of a vector MA process of order
H − 1. Moreover, for any non-zero complex vector c, we have c

′
fH(λ)c∗ ≥ 0.

Intuitively, as H → ∞, we have ∥fH(λ) − f(λ)∥2 → 0, and hence fH(λ) → f(λ) in
L2-sense for each λ ∈ [−π, π].

In particular, fH(0) is given by

fH(0) =
1

2π

[
H−1∑
s=0

As

]
Σ

H−1∑
s′=0

A
′

s′

 .(7.36)

When H = 1, the predictive spectral density reduces to the noise covariance matrix:
f1(0) = Σ.

The corresponding forecast error covariance matrix is

ΓH(0) =
∫ π

−π
fH(λ) dλ =

H−1∑
s=0

AsΣA
′

s .(7.37)

Then, O < Σ = Γ1(0) ≤ Γ2(0) ≤ · · · ≤ ΓH(0) ≤ Γ(0) for any finite H (≥ 1) in the
sense of positive or non-negative definiteness.
For the k-th component of the process, the H-step-ahead forecast error variance is
the (k, k)-th element of ΓH(0) and is given by:

γkk(H) =
∫ π

−π
fH
kk(λ) dλ.(7.38)

As H → ∞, ΓH(0) → Γ(0) and γkk(H) → γkk for any k (k = 1, · · · ,m), where
γkk is the unconditional variance of the k-th component under the assumption of
weak-stationarity of stochastic processes.

Thus, forecast error variance is expressible as the integral of predictive spectral
density over frequency. This formulation provides a natural framework to orga-
nize short-run, medium-run, and long-run spectral analyses in both the time and
frequency domains.

The arguments from Sections 5 and 6 naturally extend to predictive spectral density.
The (k, k)-th element of fH(λ) is given by:

fH
kk(λ) =

1

2π

m∑
j=1

∣∣∣∣∣
H−1∑
s=0

e
′

kAseje
−isλPej

∣∣∣∣∣
2

,(7.39)

which still depends on the choice of P, i.e., the ordering of variables.
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Using the Pesaran―Shin decomposition, the predictive spectral density can be
expressed as:

fH
kk(λ) = f ∗,H

kk (λ) + f ∗∗,H
kk (λ),(7.40)

shortrun where

f ∗,H
kk (λ) =

m∑
j=1

1

2π

∥∥∥∥∥e′

k

H−1∑
s=0

AsΣe−isλej/
√
σjj

∥∥∥∥∥
2

.

Although the second term of (7.40) is not necessarily non-negative, this decomposi-
tion remains valid.

By redefining the following relative power decompositions for finite H(prediction
horizon) instead of (5.23), (5.25), and (5.26) as :

RPS,H
g→k (λ), RRKTS,H

g→k (λ), RRA,H
g→k(λ),

we obtain the following result.

Proposition 2: Under the small-correlation asymptotic framework, as ρ → 0, for
all g, k = 1, . . . ,m,

lim
ρ→0

RPS,H
g→k (λ) = lim

ρ→0
RRKTS,H

g→k (λ) = RRA,H
g→k(λ).(7.41)

In practice, Propositions 1 and 2 may not hold exactly for real-world multivariate
time series. Thus, it is advisable to utilize finite-horizon (H ≥ 1) decompositions―
such as the Pesaran―Shin innovation decomposition, variance ratios, and modified
RPC-based predictive spectral measures―as informative and interpretable diagnos-
tics.

Note that Sections 2 through 6 assume that the multivariate process (2.1) satisfies
the weak-stationarity condition (A). However, the framework developed in Section
7 still holds under a relaxed assumption:
(Condition A′): All roots of the characteristic equation∣∣∣∣∣Imλp −

p∑
s=1

Φsλ
p−s

∣∣∣∣∣ = 0(7.42)

are either equal to 1 or lie strictly inside the unit circle.
This includes, for example, the cointegrated processes proposed by Engle and Granger
(1987). Although unit roots cause the forecast variances to diverge as H → ∞, the
predictive spectral density of (7.35) and the prediction variances for finite H remain
meaningful. Therefore, even in the presence of unit roots in multivariate discrete-
time AR models, the statistical analyses remain valid in terms of predictive spectral
density instead of the standard spectral density.
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Also, in financial market analysis, continuous-time diffusion processes or stochastic
differential equations are frequently used. The frequency-domain methods discussed
here may also prove important for the study of nonstationary processes and high-
frequency financial data.

8 Numerical Illustrations and Empirical Analysis

To empirically support the theoretical results discussed in the previous sections, we
provide both simulation-based numerical illustrations and real data analyses. Three
spectral decomposition approaches are compared:

• Akaike’s Relative Power Contribution (RPC), defined in equation (5.25),

• Kitagawa’s Extended RPC (ERPC), proposed by Kitagawa et al. (2023), de-
fined in equation (5.26), and

• Pesaran―Shin RPC (PSRPC), defined in equation (5.23).

Note that we use RPC, ERPC, PSRPC with finite horizon H as we discussed in
Section 7.

8.1 Simulation Study

We first consider a simulated 3-dimensional stationary VAR(2) process of the form:

yn = A1yn−1 + A2yn−2 + εn,(8.43)

where the coefficient matrices are given by:

A1 =

 0.5 0.2 0
0.1 0.4 0
0 0.3 0.5

 , A2 =

 0.1 0 0
0 0.1 0.1
0 0 0.1

 ,
and the innovation term εn ∼ N (0,Σ) is a white noise process. The absolute values
of all roots of |λ2I3 − λA1 −A2| = 0 are less than one (-0.1534 ± 0.0885i, -0.1531,
0.3908, 0.6531, 0.8160). Two scenarios for the covariance matrix Σ innovations are
considered:

• Scenario 1 (Uncorrelated Innovations):

Σ1 =

 1 0 0
0 1 0
0 0 1
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• Scenario 2 (Correlated Innovations):

Σ2 =

 1 0.5 0.2
0.5 1 0
0.2 0 1


To conserve space, we report the results for the first component of the process only.
We take the prediction horizon as H = 2, H = 11, and H = +∞ (the last case
corresponds to the spectral decomposition in the stationary process). Figures 1–3
illustrate the frequency-domain decompositions under Scenario 1, and Figures 4–6
under Scenario 2. In Scenario 1, all three decomposition methods yield identical
results, which validates the theoretical equivalence under independent innovations.
In contrast, under Scenario 2, the results of ERPC and PSRPC differ substantially,
particularly when the forecast horizon H is finite. In Scenario 2, the PS decompo-
sition results often differ significantly from the decompotion of ERPC sigificantly
in low and high frequencies. It may be of some interest to find the effects of finite
prediction horizons as Figure 6.

We also similated the multivariate AR model given by (8.43), where the coefficient
matrices are given by:

A1 =

 0.6 0.2 0.1
−0.4 0.5 0.2
0.1 0.3 0.4

 , A2 =

 0.2 0.1 −0.1
0.1 −0.2 0.3
0.2 0.4 0.1

 ,
and the innovation term εn ∼ N (0,Σ) is a white noise process. The absolute values
of all roots of |λ2I3 − λA1 −A2| = 0 are less than one or one (-0.2902 ± 0.1309i,
0.1758 ± 0.6234i,, 0.7289, 1.00). Thus, the simulated process is a cointedrated
process. We only report the simulation results on the second scenarios for the
covariance matrix Σ innovations are considered. In Figures 7–9, we give the spectral
decomposition results of the first variable and compare three types of RPCs. In
the first row, we show the true decompositions from the true model while in the
second row we show the estimated decomposisions used by the ordinary least squares
(OLS) estimation method. The estimated deomposition is quite similar to the true
decomposition in this case.

As disucssed at the end of Section 7, the spectral decompositions give useful
information even if the multivariate time series process has a unit root. The general
observations of three types of RPC in this case are not different from those for the
stationary processes. Although the prediction errors diverge as H → +∞ in this
case, we found that the spectral decomposition results are rather stable numerically.
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8.2 Empirical Examples

We next analyze two real-world datasets used in Kitagawa, Tanokura and Sato
(2023) as typical examples. These examples reflect contrasting levels of estimated
innovation correlation:

• Example 1 (Ship Control Data): A 7-dimensional control system dataset
from a ship named Hakusan, where the innovations are estimated to be weakly
correlated.

• Example 2 (Japanese Macroeconomic Data): A 4-dimensional macroe-
conomic dataset, in which the cyclical components were extracted using the
DECOMP method. The innovations in this case exhibit strong mutual corre-
lations.

Tables 1 and 2 report the estimated innovation correlations for these datasets, ob-
tained via TSSS estimation 4. We used the command marfit and minimum AIC
criteria of TSSS in our computation.

Table 1: Estimated Innovation Correlations : Hakusan (Ship Control) Data
V1 V2 V3 V4 V5 V6 V7

V1 1.0000 0.0102 -0.0383 -0.1172 -0.0412 -0.0341 -0.0590
V2 0.0102 1.0000 0.0909 0.0713 -0.0367 0.0794 0.0234
V3 -0.0383 0.0909 1.0000 -0.0412 -0.0352 0.0448 -0.2758
V4 -0.1172 0.0713 -0.0412 1.0000 -0.0656 0.1154 0.0221
V5 -0.0412 -0.0367 -0.0352 -0.0656 1.0000 0.0010 -0.0165
V6 -0.0341 0.0794 0.0448 0.1154 0.0010 1.0000 -0.0002
V7 -0.0590 0.0234 -0.2758 0.0221 -0.0165 -0.0002 1.0000

Table 2: Estimated Innovation Correlations : Japanese Macroeconomic Data
V1 V2 V3 V4

V1 1.0000 0.8412 0.7461 0.2659
V2 0.8412 1.0000 0.6487 0.1988
V3 0.7461 0.6487 1.0000 -0.1679
V4 0.2659 0.1988 -0.1679 1.0000

Figures 10–12 present the frequency-domain decomposition results for the Hakusan
data, and Figures 13–15 for the macroeconomic data with three prediction horizons.
In the former case, the differences among RPC, ERPC, and PSRPC are negligible,

4TSSS including Decomp is available as a package in R. See Kitagawa (2021) for the detail.
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while in the latter, substantial differences are observed depending on the forecast
horizon. In the macroeconomic data, the PS decomposition results often differ from
the decompotion of ERPC sigificantly in low and high frequencies. This corresponds
to Scinario 2 in our simulation since the absolute values of estimated correlations are
large in comparison with Hakusan data. The results of estimated ERPC and PSRPC
from data often differ substantially. On the other hand, the spectral characteristics
of the Hakusan dataset correspond closely to those assumed in Scenario 1 of the
simulation study.

The most important finding from our numerical and data analysis is that we
should be careful whether the absolute values of the estimated correlations among
inovations are large significantly or not before interpreting the estimated results.
The decomposition of predictive spectral density depends on the frequency as well
as the prediction horizon H. The inovation variances and covariances may have
different effects with some horizon on the taeget variable in low and high frequencies.
In applications, we are often interested in its prediction and the prediction hrizon
may have an important implication. It is often the case for macroeconomic data in
particular.

9 Concluding Remarks

In recent applied econometric studies, the decomposition method proposed by Pe-
saran and Shin (1998) has been employed within the context of VAR analysis. Since
the introduction of the VAR model by Sims (1980), the analysis of multivariate time
series in macroeconometrics has long been troubled by the issue that forecast error
variance decompositions depend on the ordering of variables. The Pesaran-Shin de-
composition is regarded by some economists as a welcome contribution, as it yields
results that are invariant to variable ordering in multivariate time series analysis.
In applications such as Diebold and Yilmaz (2012) concerning volatility in financial
data, it is implicitly assumed that the correlation among innovations is negligible.

However, as discussed in this paper, the methodology of Pesaran and Shin (1996)
contains fundamental limitations. In general, the Pesaran-Shin decomposition does
not precisely correspond to the true forecast error decomposition, resulting in ap-
proximation errors. Upon closer examination, this issue is related to problems al-
ready recognized in the works of Akaike (1968) and Sims (1980). In cases where the
correlations among innovations are small, the Pesaran-Shin decomposition coincides
with the RPC (Relative Power Contribution) decomposition developed by Akaike
(1968) (see Proposition 1). As shown in this paper, when the cross-correlations
among innovations are negligible, the results obtained using the method of Pesaran
and Shin (1996) are approximately consistent with those derived from Akaike ’s
methodology (1968, 1971).

Nevertheless, when such correlations cannot be ignored, the analysis should be
carried out with care. In such cases, it would be appropriate to consider alter-
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native methods such as the ERPC (Extended RPC) and modified RPC proposed
by Kitagawa, Tanokura, and Sato (2023). As they pointed out, particular cau-
tion is warranted in the case of macro-economic data. The influence of innova-
tion correlations on the forecast error decomposition can be assessed via the ratio
rk(H) = γ∗

kk(H)/γkk(H) (k = 1, · · · ,m), for instance. The recent issues in econo-
metric analysis are closely related to the long-standing debate on G-causality since
Granger (1969), and it is essential to understand the connection between forecast
error decompositions and causality measures.

This paper has proposed the use of the forecast spectral density matrix based
on the Fourier transform of forecast errors with finite prediction horizon, and its
practical utility has been highlighted. We visualize the decomposition of predictive
spectral density in Section 8 for illustrations. The discussion presented here demon-
strates that innovation-based decompositions (IR, GIR, Pesaran-Shin), spectral de-
compositions (Akaike’s RPC, ERPC), and forecast error covariance decompositions
(Causality Measures) can all be interpreted within a coherent framework. Moreover,
these ideas may potentially be extended to applications in high-frequency financial
markets based on non-stationary stochastic processes or continuous-time diffusion
processes.

Although the practical implications of the theoretical arguments in this paper
were only preliminarily validated through simulations and limited empirical data,
the results suggest a wide range of possible applications. Further methodological
development is anticipated, particularly for analyses involving high-dimensional set-
ting. While a considerable amount of time has passed since the seminal works of
Akaike (1968, 1971), we believe that there remains significant potential for advancing
applications of multivariate time series analysis.
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APPENDIX : Figures of Spectral Decomposition

In this Appendix, we present some figures discussed in Section 8. In each figure, we
draw the estimated decompotion of spectral density for each innovations. Because
there are many figures with similar characteristics in simulations, we have omitted
some figures.

Figure 1: independent noises (Stationary Case, Sinario 1) H = ∞

Figure 2: independent noises (Stationary Case, Sinario 1) H = 2
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Figure 3: independent noises (Stationary Case, Scinario 1) H = 11

Figure 4: dependent noises (Stationary Case, Scinario 2) H = ∞
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Figure 5: dependent noises (Stationary Case, Scinario 2) H = 2

Figure 6: dependent noises (Stationary Case, Scinario 2) H = 11
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Figure 7: In the case of dependent noises (Co-integrated Case, Scinario 2) H = ∞,
the first row shows the results by true coefficients while the second row shows the
results by OLS estimation.

Figure 8: In the case of dependent noises (Co-integrated Case, Scinario 2) H = 2,
the first row shows the results by true coefficients while the second row shows the
results by OLS estimatation.
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Figure 9: In the case of dependent noises (Co-integrated Case, Scinario 2) H = 11,
the first row shows the results by true coefficients while the second row shows the
results by OLS estimatation.
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Figure 10: Hakusan data H = ∞
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Figure 11: Hakusan data H = 2
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Figure 12: Hakusan data H = 11
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Figure 13: Macroeconomic data H = ∞
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Figure 14: macroeconomic data H = 2
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Figure 15: macroeconomic data H = 11
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