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Abstract

We propose a novel smoothing (or filtering) approach for time series analysis
to estimate the hidden states of random variables and handle noisy, nonsta-
tionary time series data. The method is applicable even when the sample
size is small, as is often the case with major macroeconomic time series data.
Our approach is based on the frequency decomposition of nonstationary time
series, and we address the smoothing and filtering challenges specific to such
data. In particular, we introduce two methods: forward and backward SIML
smoothing, designed to resolve the initial value problem in nonstationary time
series analysis. The proposed smoothing methods offer interpretations in both
the time and frequency domains. To demonstrate the effectiveness of our ap-
proach, we provide an illustrative empirical example using U.S. manufacturers’
new order data and apply the filtering method to the problem of detecting
recent breaks in macroeconomic consumption trends.
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1. Introduction

Time series analysis is a cornerstone of macroeconomic research, providing crit-
ical insights into trends, cycles, and other dynamic behaviors in economic data.
However, macroeconomic time series often exhibit significant challenges: they are
typically nonstationary, noisy, and available in small sample sizes. For example, 30
years of quarterly data comprise only 120 observations, while 20 years of monthly
data include just 240 observations. These characteristics limit the applicability of
traditional smoothing and filtering methods, which often rely on large sample sizes
or strong distributional assumptions.

Existing methods, such as Kalman filtering and the Hodrick-Prescott filter, have
been widely employed in econometrics. While these methods are powerful, they
often face limitations in multivariate settings or when addressing noisy, nonstation-
ary data. Additionally, many traditional approaches struggle with the initial value
problem, where the starting estimate for state variables significantly influences the
smoothing outcomes. Another critical challenge lies in detecting structural breaks
near the endpoints of observations. Recent macroeconomic shocks, such as the 2008
financial crisis and the COVID-19 pandemic, underscore the importance of timely
structural break detection for effective policymaking.

To address these issues, this study proposes a new smoothing and filtering frame-
work tailored to the needs of macroeconomic time series analysis. Our approach,
referred to as the SIML smoothing methods, leverages frequency-domain filtering to
provide robust and interpretable solutions for nonstationary time series. The pro-
posed methods include forward, backward, and multi-step smoothing procedures,
which are designed to resolve the initial value problem systematically. Moreover,
this study extends these methods to multivariate settings and applies them to the
detection of structural changes near observation endpoints, a task where existing
methods are often inadequate.

The contributions of this study are as follows: (i) Development of Novel Smooth-
ing Methods: We introduce forward, backward, and multi-step SIML smoothing
techniques that address key challenges in nonstationary time series analysis, includ-
ing small sample sizes and initial value sensitivity. (ii) Structural Break Detection
Framework: A new method for detecting structural changes near observation end-
points is developed, focusing on recent changes in trend-cycle components of noisy
data. (iii) Applicability to Multivariate Time Series: Our methods are designed to
handle multivariate settings without relying on strong distributional assumptions,
making them suitable for multiple macroeconomic data. (iv) Empirical Applica-
tions: The proposed methods are demonstrated through real-world examples, in-
cluding U.S. manufacturers’ new order data and the detection of structural breaks
in macroeconomic consumption trends in Japan.

By addressing the unique challenges of nonstationary, noisy, and small-sample
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time series, this study provides a systematic, interpretable, and robust framework for
macroeconomic time series analysis. Our methods not only extend the capabilities
of existing smoothing and filtering techniques, but also offer new tools for structural
break detection, with significant implications for econometric research and policy
formulation.

The remainder of this paper is structured as follows. In Section 2, we intro-
duce the general framework of the nonstationary errors-in-variables model and the
SIML method. Section 3 develops the SIML smoothing techniques, including for-
ward, backward, and multi-step procedures, and addresses theoretical issues such
as convergence. Section 4 generalizes the methods to multivariate settings and pro-
vides a frequency-domain interpretation. Section 5 presents numerical examples to
illustrate the practical applications of our methods, while Section 6 introduces a
novel approach to detecting recent structural breaks. Finally, Section 7 concludes
the study and outlines future research directions. Mathematical derivations and
additional figures are provided in the Appendix.

2. Nonstationary Errors-in-variables models

Let yji be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =
1, · · · , p. We set yi = (y1i, · · · , ypi)

′
as a p × 1 vector and Yn = (y

′
i) (= (yij))

as an n × p matrix of observations, and we denote y0(or yn) as the initial p × 1
vector, which is assumed to be observable. Furthermore, we attempt to estimate
the underlying nonstationary trend and stationary cycle when the nonstationary
state vector xi (= (xji)) (i = 0, 1, · · · , n), and the vector of noise component v

′
i =

(v1i, · · · , vpi) are mutually independent. Then, we use the nonstationary errors-in-
variables representation

yi = xi + vi (i = 0, 1, · · · , n),(2.1)

where the state vector xi (i = 0, 1, · · · , n) is a sequence of the nonstationary I(1)
vector process, which satisfies

∆xi = (1− L)xi = v
(x)
i (i = 1, · · · , n),(2.2)

(x0 or xn as the initial vector), and the measurement error (or noise) vector v
(x)
i is

a sequence of the i.i.d. random vectors with E(v
(x)
i ) = 0 and E(v

(x)
i v

(x)′

i ) = Σx.
The random vector vi (i = 0, 1, · · · , n) is a sequence of i.i.d. random variables with
E(vi) = 0 and E(viv

′
i) = Σv.

When we assume that each pair of vectors ∆xi and vi are independently, iden-
tically, and normally distributed (i.i.d.) as Np(0,Σx) and Np(0,Σv), respectively,
and we have the observations of an n× p matrix Yn = (y

′
i), then, given the initial

condition y0 as times goes from 0 to n, the np×1 random vector (y
′
1, · · · ,y

′
n)

′
follows

vec(Yn) ∼ Nn×p

(
1n · y

′

0, In ⊗Σv +CnC
′

n ⊗Σx

)
,(2.3)
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where 1
′
n = (1, · · · , 1) and

Cn =


1 0 · · · 0 0
1 1 0 · · · 0
1 1 1 · · · 0
1 · · · 1 1 0
1 · · · 1 1 1


n×n

.(2.4)

We use the Kn−transformation that is from Yn to Zn (= (z
′
k)) by

Zn = Kn

(
Yn − Ȳ0

)
,Kn = PnC

−1
n ,(2.5)

where

C−1
n =


1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1


n×n

,(2.6)

and the (k, j)−th element of Pn = (p
(n)
kj ) is defined by

p
(n)
kj =

√√√√ 2

n+ 1
2

cos
[

2π

2n+ 1
(k − 1

2
)(j − 1

2
)
]
.(2.7)

By using the spectral decomposition (see Lemma A.1 in the Appendix), C−1
n C

′−1
n =

PnDnPn, andDn is a diagonal matrix with the k-th element dk = 2[1−cos(π( 2k−1
2n+1

))] (k =
1, · · · , n) , and we write

a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(2.8)

(See Chapter 3 of Kunitomo and Sato (2024) for the details.)

In the general case of (2.1) and (2.2), yi = xi + vi, ∆xi = v
(x)
i , and the noise

component vi(i = 0, 1, · · · , n) and the state variables component v
(x)
i (= ∆xi) are

sequences of the stationary processes satisfying

vi =
∞∑

j=−∞
C

(v)
j e

(v)
i−j(2.9)

and

v
(x)
i =

∞∑
j=−∞

C
(x)
j e

(x)
i−j ,(2.10)
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where e
(v)
i and e

(x)
i are sequences of i.i.d. random vectors with E(e

(v)
i ) = E(e

(x)
i ) = 0,

E(e
(v)
i e

(v)′

i ) = Σ(v)
e (a non-negative definite matrix) and E(e

(x)
i e

(x)′

i ) = Σ(x)
e (a non-

negative definite matrix). For normalization we use C
(v)
0 = C

(x)
0 = Ip.

The p×p coefficient matrices C
(v)
j and C

(x)
j (j = · · · ,−1, 0, 1, · · ·) in (2.9) and (2.10)

are absolutely summable such that
∑∞

j=−∞ ∥C(v)
j ∥ < ∞ and

∑∞
j=−∞ ∥C(x)

j ∥ < ∞,

where ∥C(v)
j ∥ = maxk,l=1,···,p |c(v)k,l (j)| forC

(v)
j = (c

(v)
k,l (j)) and ∥C(x)

j ∥ = maxk,l=1,···,p |c(x)k,l (j)|
for C

(x)
j = (c

x)
k,l(j)), respectively.

The measurement error vector vi may include the (stationary) seasonal compo-
nent si when the main interest is to understand the trend factors as the state
vector in the low frequency part, which is less than a year. Alternatively, the
state vector ∆xi (= v

(x)
i ) may include the seasonal components satisfying si =∑∞

j=−∞C
(s)
sj e

(s)
i−sj (s ≥ 2) and e

(s)
i is a sequence of i.i.d. random vectors with

E(e
(s)
i ) = 0 and E(e

(s)
i e

(s)′

i ) = Σ(s)
e (the coefficient matrices C

(s)
sj are absolutely

summable
∑∞

j=−∞ ∥C(s)
j ∥ < ∞).

In the time series analysis, the causal MA representation of stationary process
has the form vi =

∑∞
j=0 C

(v)
j e

(v)
i−j, and v

(x)
i =

∑∞
j=0 C

(x)
j e

(x)
i−j in (2.9) and (2.10).

The non-causal representation has similar form with the reversed time direction
vi =

∑0
j=−∞C

(v)
j e

(v)
i−j, and v

(x)
i =

∑0
j=−∞C

(x)
j e

(x)
i−j. (For a discussion of causal and

non-causal representations of stationary processes, see Chapter 3 of Brockwell and
Davis (1990).) In the following sections, we interpret the forward SIML filtering as
a causal filtering based on the causal MA representation of stationary time series
while the backward SIML filtering as a non-causal filtering based on the non-causal
representation.

3. The SIML Smoothing Methods

3.1 Forward SIML Smoothing

For the stationary process, we utilize the representation of (2.9) and (2.10). We
first consider the nonstationary errors-in-variables model of (2.1), (2.9) and (2.10)

with the causal representation vi =
∑∞

j=0C
(v)
j e

(v)
i−j and v

(x)
i =

∑∞
j=0C

(x)
j e

(x)
i−j. To

disentangle the non-stationarity of time series data, we first use Kn−transformation
in (2.5) because the elements of the resulting n × p random matrix Zn take real
values in the frequency domain, and their roles are easy to be understood. Unlike
the standard time series analysis, however, we use the real-valued Fourier transfor-
mation and we have an intuition that they are the orthogonal data process and are
nearly distributed as the Gaussian process. As Pn is a real-valued discrete Fourier
transformation, vectors zk (k = 1, · · · , n) in Zn are asymptotically uncorrelated.
(See discussions on spectral decomposition of stationary time series in Section 4.)
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The main idea of the forward filtering is that we consider the partial inversion of
the transformed (real-valued causal) orthogonal processes. Let an n× p matrix be

X̂n(Q) = CnPnQnPnC
−1
n (Yn − Ȳ0)(3.1)

and
Zn = PnC

−1
n (Yn − Ȳ0) ,Yn = Ȳ0 +X(0)

n +Vn ,(3.2)

where X(0)
n = (x

(0)′

i ) and Vn = (v
′
i) are n × p matrices, and x

(0)
i = xi − x0 (i =

1, · · · , n). We set the initial vector as y0 = x0.
The stochastic process Zn is the orthogonal decomposition of the original time series
Yn in the frequency domain, andQn is an n×n filtering matrix. BecauseYn consists
of non-stationary time series, we need a special form of transformation Kn in (2.5).
Let an m× n choice matrix be Jm = (Im,O), and let an n× p matrix be

X̂n(m) = CnPnQ
(m)
n PnC

−1
n (Yn − Ȳ0) ,(3.3)

and we denote an n× n matrix Q(m)
n = J

′
mJm.

For the n × p hidden state matrix Xn, we construct an estimator only by using
the lower-frequency parts in the inverse transformation of Zn and by deleting the
estimated noise parts. We denote the hidden trend state as

Xn(m) = CnPnQ
(m)
n PnC

−1
n X(0)

n .(3.4)

This quantity is different from Xn because xi (i = 1, · · · , n) in (3.1) and (3.2) con-
tains not only the trend component of yi (i = 1, · · · , n) but also the noise component
in the frequency domain. We attempt to estimate the trend component of xi by us-
ing (3.3) and recover the trend component of Xn, which are close to zero frequency,
because the effects of differenced measurement error noises (vi−vi−1) are negligible
at zero frequency. This method differs from some existing procedures that consider
the decomposition of stationary time series only in the time domain. Our argu-
ments can be justified by using the frequency decomposition of yi and r

(n)
i = ∆yi

(= yi − yi−1 and y0 being fixed). Because the issue has importance consequences,
we will discuss this in the detail in Section 4.

3.2 Backward SIML Smoothing

We investigate the role of the initial condition in the nonstationary process and
consider the situation when the time is reversed, that is, from n to 0, rather than
from 0 to n. We consider the nonstationary errors-in-variables model of (2.1), (2.9)

and (2.10) with the non-causal representation vi =
∑0

j=−∞ C
(v)
j e

(v)
i−j and v

(x)
i =∑0

j=−∞C
(x)
j e

(x)
i−j.
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We take the n × p matrix Y∗
n = (y

′
i−1) and set the np × 1 random vector

(y
′
0, · · · ,y

′
n−1)

′ 1. Given the initial condition yn, we rewrite

vec(Y∗
n) ∼ Nn×p

(
1n · y

′

n, In ⊗Σv +C
′

nCn ⊗Σx

)
,(3.5)

where 1
′
n = (1, · · · , 1) and Cn is given by (2.4). (See (2.3) for Yn.)

We use K∗
n−transformation that from Y∗

n to Z∗
n (= (z∗

′
k )) by

Z∗
n = K∗

n

(
Y∗

n − Ȳ∗
n

)
,K∗

n = P∗
nC

′−1
n ,(3.6)

where Ȳ∗
n = 1ny

′
n,

C
′−1
n =


1 −1 · · · 0 0
0 1 −1 · · · 0
0 0 1 −1 · · ·
0 0 0 1 −1
0 0 0 0 1


n×n

,(3.7)

and the (k, j)−th element of P∗
n = (p

∗(n)
kj ) is defined by

p
∗(n)
kj =

√√√√ 2

n+ 1
2

sin
[

2π

2n+ 1
(k − 1

2
)j
]
.(3.8)

By using the spectral decomposition, C
′−1
n C−1

n = P∗′
nDnP

∗
n, and Dn is a diagonal

matrix with the k-th element dk = 2[1 − cos(π( 2k−1
2n+1

))] (k = 1, · · · , n) (see Lemma
A-1 in the Appendix). In our formulation of two transformations of (3.2) and (3.6),
we have the common latent roots both in the forward and backward smoothing
procedures as a∗kn (= dk) = 4 sin2

[
π
2

(
2k−1
2n+1

)]
(k = 1, · · · , n) .

We consider the partial inversion of the transformed orthogonal processes. Let an
n× p matrix be

X̂∗
n(Qn) = C

′

nP
∗′
nQnP

∗
nC

′−1
n (Y∗

n − Ȳ∗
n)(3.9)

and
Z∗

n = P∗
nC

′−1
n (Y∗

n − Ȳ∗
n) ,Y

∗
n = Ȳ∗

n +X∗
n +V∗

n ,(3.10)

where X∗
n = (x

∗(n)′
i−1 ) and V∗

n = (v
′
i−1) are the n × p matrices, and x

∗(n)
i−1 = xi−1 −

xn (i = 1, · · · , n).
The stochastic process Z∗

n is the orthogonal decomposition of the original time series
Y∗

n in the frequency domain, and Qn is an n × n filtering matrix. Because Y∗
n

consists of non-stationary time series, we need a special form of transformation K∗
n.

1Given the initial condition yn, we consider the joint distribution of (y
′

n−1, · · · ,y
′

0)
′
, while we

use yi (i = 0, 1, · · · , n) as the notation without making confusion..
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We provide an explicit form for the trend filtering procedure. Then, let the n × p
matrix be

X̂∗
n(m) = C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1
n (Y∗

n − Ȳ∗
n)(3.11)

and Q(m)
n = J

′
mJm.

We construct an estimator of n × p hidden state matrix X∗
n only in the lower-

frequency parts by using the inverse transformation of Z∗
n and by deleting the esti-

mated noise parts. In this notation, the corresponding hidden trend state is given
by

X∗
n(m) = C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1
n X∗(n)

n ,(3.12)

whereX∗(0)
n = (x

∗(0)′
i ) is the hidden state matrix and x

∗(n)
i = xi−xn (i = 0, · · · , n−1).

It corresponds to the inversion of the m low frequency parts of the hidden state
variables.

3.3 Initial Value Problem and Convergence

When dealing with non-stationary time series observations modeled as a random
walk, the initial value plays a crucial role due to the nature of non-stationarity.
This contrasts with stationary time series models, where the effect of the initial
value becomes asymptotically negligible as the sample size increases. Therefore,
it is important to develop a smoothing or filtering procedure for non-stationary
time series that minimizes dependence on the initial value. In the context of initial
values, two possibilities arise: y0 and yn when we have n + 1 vector observations
yi (i = 0, 1, · · · , n). In this problem, we have an interesting result.

We consider two operators T
(m)
2k and T

(m)
2k−1(k ≥ 1) to an n × 1 vector. Let T0 = In

and define T
(m)
2k−1 and T

(m)
2k recursively for k = 1, · · · ,M by

T
(m)
2k+1(y) = CnPnQ

(m)
n PnC

−1
n [y − 1n(e

′

1T
(m)
2k (y))] + 1n(e

′

1T
(m,n)
2k (y)) ,(3.13)

and

T
(m)
2k (y) = C

′

nP
∗ ′

n Q(m)
n P∗

nC
′−1
n [y − 1n(e

′

nT
(m)
2k−1(y))] + 1n(e

′

nT
(m)
2k−1(y)) ,(3.14)

where Q(m)
n = J

′
mJm, 1

′
n = (1, · · · , 1), and e

′
1 = (1, 0, · · · , 0) and e

′
n = (0, · · · , 0, 1)

are n× 1 unit vectors.
The operator T

(m)
2k−1 (k ≥ 1) is the forward SIML filering with the initial value y0 at

i = 0 and T
(m)
2k (k ≥ 1) is the backward filtering with the initial value at i = n.

For non-stationary time series, two operators have different roles in smoothing pro-
cedure.
Let ỹ = (y0, y1, · · · , yn−1, yn) be an (n+1)×1 vector, and n×(n+1) choice matrices
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Jf = (0, In) and Jb = (In,0). Then, we repeat the forward smoothing procedure
such that for y = Jf ỹ and k ≥ 1,

T
(m)
2k+1(y) = C

′

nPn∗′Q(m)
n P∗

nC
′−1
n Jf ỹ + [In −CnPnQ

(m)
n PnC

−1
n ]

×1ne
′

1

[
C

′

nP
∗ ′

n Q(m)
n P∗

nC
′−1

(
Jbỹ − 1n(e

′

nT
(m)
2k−1(y))

)
+ 1n(e

′

nT
(m)
2k−1(y))

]
.

We also repeat the backward smoothing procedure such that for y = Jbỹ and k ≥ 1,

T
(m)
2(k+1)(y) = CnPnQ

(m)
n PnC

−1
n Jbỹ + [In −C

′

nP
∗′
nQ

(m)
n P∗

nC
−1′

n ]

×1ne
′

n

[
CnPnQ

(m)
n PnC

−1
(
Jf ỹ − 1n(e

′

1T
(m)
2k (y))

)
+ 1n(e

′

1T
(m)
2k (y))

]
.

Then, we have the next proposition on the convergence of the smoothing procedure
and the proof is given in the Appendix.

Theorem 3.1 : As k → ∞, for any even number m for 1 < m < n, we have

T
(m)
2k+1 → T

(m)
1∗ =

∞∑
s=0

(A
(m)
2 )sA

(m)
1 ,(3.15)

and

T
(m)
2k → T

(m)
2∗ =

∞∑
s=0

(A
(m)
2∗ )sA

(m)
1∗ ,(3.16)

where

A
(m)
1 = CnPnQ

(m)
n PnC

−1
n Jf + [In −CnPnQ

(m)
n PnC

−1
n ]1ne

′

1C
′

nP
∗′
nQ

(m)
n P∗

nC
′−1
n Jb,

A
(m)
2 = [In −CnPnQ

(m)
n PnC

−1
n ]1n × [1− e

′

1C
′

nP
∗′
nQ

(m)
n P∗

nC
′−1
n 1n]e

‘
n ,

A
(m)
1∗ = C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1
n Jb + [In −C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1
n ]1ne

′

nCnPnQ
(m)
n PnC

−1
n Jf ,

A
(m)
2∗ = [In −C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1
n ]1n × [1− e

′

nCnPnQ
(m)
n PnC

−1
n 1n]e

‘
n .

The absolute values of all eigenvalues of A
(m)
2 and A

(m)
2∗ are less than one. Then, we

can expresss

∞∑
s=0

(A
(m)
2 )s = (In −A

(m)
2 )−1 ,

∞∑
s=0

(A
(m)
2∗ )s = (In −A

(m)
2∗ )−1 .

Given that the initial value is the starting point of nonstationary time series, we
need to develop a smoothing procedure that does not depend on the initial value.
Practically, often we do want to use the procedure that does not depend on the first
or latest observation y0 or yn. In these cases, it may be reasonable to use the T

(m)
2∗

or T
(m)
1∗ , respectively.
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It may be interesting to find the difference between the forward smoothing and
backward smoothing. Let the two operators beHn = (h

(n)
ab ) = CnPnQ

(m)
n PnC

−1
n and

Fn = (f
(n)
ab ) = C

′
nP

∗′
nQ

(m)
n P∗

nC
′−1
n . Then, each term of h

(n)
ab and f

(n)
ab are complicated

sums of trigonometric functions in the forward and backward SIML smoothing.
However, they are similar as we summarize in the next result. The proof is given in
the Appendix.

Theorem 3.2 : For any δ > 0, we take m = [mn] such that 0 < mn < m1+δ
n < n.

Then, as mn/n → 0 and n → ∞,

(
n

m1+δ
n

)Tr[Hn − Fn] → 0 ,(3.17)

where the trace of an n× n matrix A = (aij) is defined by Tr(A) =
∑n

i=1 aii.

The total norm of two operators is O(m1+δ
n /n), which is small in typical applications.

From this result, the backward SIML smoothing is essentially similar to the forward
smoothing when n is large. As we shall discuss in Section 4.2, it is a real (finite-
and discrete) Fourier transformation if we take that the time is reversed from n to
0, rather than from 0 to n.

3.4 Band Smoothing

We consider a general filtering based on Kn and K∗
n transformations and use the

inversion of some frequency parts of the random matrices Zn and Z∗
n. The leading

example is the seasonal frequency in the discrete time series, and we take s (> 1) as
a positive integer.
Let an m2 × [m1 +m2 + (n−m1 −m2)] choice matrix be Jm1,m2 = (O, Im2 ,O) (we
take m1 +m2 < n), and let also n× p matrices be

X̂n(m1,m2) = CnPnJ
′

m1,m2
Jm1,m2PnC

−1
n (Yn − Ȳ0)(3.18)

and
X̂∗

n(m1,m2) = C
′

nP
∗′
n J

′

m1,m2
Jm1,m2P

∗
nC

′−1
n (Yn − Ȳn)(3.19)

and an n× n matrix Qn = Q(m1,m2)
n = J

′
m1,m2

Jm1,m2 .

As an example in economic data, when we have the seasonal frequency s (> 1),
we can take m1 = [2n/s] − [m/2] and m2 = m. For instance, we take s = 4 for
the quarterly data and s = 12 for the monthly data. (See Kunitomo and Sato
(2021) for details.) In the same way to the trend smoothing problem, the SIML
forward-filtering is given by

Xn(m1,m2) = CnPnQ
(m1,m2)
n PnC

−1
n X(0)

n ,(3.20)
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and the SIML backward-filtering is given by

X∗
n(m1,m2) = C

′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1
n X∗

n ,(3.21)

respectively, which are based on the estimated frequency components of x
(0)
i (i =

1, · · · , n) or x∗(n)
i (i = 0, · · · , n− 1).

In this case, we can define two operators T
(m1,m2)
2k−1 and T

(m1,m2)
2k for k = 1, · · ·M as

(3.13) and (3.14) by using Jm1,m2 , rather than Jm. Then, it is straightforward to to
find the next proposition on the convergence of smoothing procedure, and the proof
is in the Appendix.

Theorem 3.3 : Let m1 and m2 are even numbers such that 1 < m1 < m1+m2 < n.
As k → ∞, we have

T
(m1,m2)
2k+1 → T

(m1,m2)
1∗ =

∞∑
s=0

(A
(m1,m2)
2 )sA

(m1,m2)
1 ,(3.22)

and

T
(m1,m2)
2k → T

(m1,m2)
2∗ =

∞∑
s=0

(A
(m1,m2)
2∗ )sA

(m1,m2)
1∗ ,(3.23)

where

A
(m1,m2)
1 = CnPnQ

(m1,m2)
n PnCn

−1Jf

+ [In −CnPnQ
(m1,m2)
n PnC

−1
n ]1ne

′

1C
′

nP
∗
nQ

(m1,m2)
n P∗

nC
′−1
n Jb,

A
(m1,m2)
2 = [In −CnPnQ

(m1,m2)
n PnC

−1
n ]1n × [1− e

′

1C
′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1
n 1n]e

‘
n ,

A
(m1,m2)
1∗ = C

′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1
n Jb

+ [In −C
′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1
n ]1ne

′

nCnPnQ
(m1,m2)
n PnC

−1
n Jf

A
(m1,m2)
2∗ = [In −C

′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1
n ]1n × [1− e

′

nCnPnQ
(m1,m2)
n PnC

−1
n 1n]e

‘
n

and Jf and Jb are used as Theorem 3.1.

The absolute values of all eigenvalues of A
(m1,m2)
2 and A

(m1,m2)
2∗ are less than one;

then, we can express

∞∑
s=0

(A
(m1,m2)
2 )s = (In −A

(m1,m2)
2 )−1 ,

∞∑
s=0

(A
(m1,m2)
2∗ )s = (In −A

(m1,m2)
2∗ )−1 .

This result is useful for handling seasonality of economic time series, as an example.
Theorem 3.1 can be regarded as a special case of Theorem 3.3 when m1 = 0 and
m2 = m. See Chapter 5 of Kunitomo and Sato (2024) for complicated use SIML
filters such as the seasonal adjustment.

11



3.5 Multi-step Smoothing

In the forward and backward smoothing procedures, choosing an appropriate m is
important. However, this problem may become difficult when seasonal components
exist. Then, it may be normal to repeat smoothing because the forward and back-
ward smoothing several times, which may be called multi-stage smoothing, can be
run.

Let T
(m)
2k−1 be the first stage forward smoothing with a specific choice of m for

k = 1, · · · , [n/2]. Then, we define the double-stage forward smoothing by

T
(m,m1,m2)
2k−1 = T

(m1,m2)
2k−1 T

(m)
2k−1 .(3.24)

Similarly, we define the double-stage backward smoothing by

T
(m,m1,m2)
2k = T

(m1,m2)
2k T

(m)
2k .(3.25)

More complicated smoothing procedures can also exist. Hence, we need some cri-
terion to find an appropriate smoothing procedure for applications. Consequently,
handling complicated seasonal patterns in the frequency domain is possible, for in-
stance.

In real applications, finding an appropriate m or m1 and m2 at the beginning
might not be certain. The meaning of frequencies may leads to a guide on choosing
frequencies. In addition, at the first stage, one strategy in the trend estimation
would be to choose a relatively large m1, which should be less than the seasonality
frequency. Then, at the second stage, we choose m2, which is smaller than m1 and
use the following evaluation criterion.

3.6 Prediction Errors and Evaluation Criteria

The problem of choosing an appropriate filtering, including the choice of m (or m1

and m2 in a more general case) in smoothing, is an important question for applica-
tions. Given that our procedure does not assume a particular distribution such as
Gaussianity and semi-parametric, it is a challenging problem. As we shall discuss
in the next section, our filtering method is based on the frequency interpretation.

In the present non-parametric setting, we consider the prediction error based on the
orthogonal process in the frequency domain and the resulting predictive criterion.
Let r

(n)
j = y

(n)
j − y

(n)
j−1 (j = 1, · · · , n); hence we have the expression

r
(n)
j =

n∑
k=1

pjkzk ,(3.26)
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where zk is the orthogonal process at the frequency λ
(n)
k = (k − 1/2)/(2n+ 1) (k =

1, · · · , n).
Then, for 1 ≤ j ≤ n, it may be natural to use the information of m−low frequencies
and construct the estimator

r̂
(n)
j (m) =

m∑
k=1

pj,kzk ,(3.27)

which is a linear combination of m orthogonal processes with different frequencies.
Then, for h ≥ 1, it may be reasonable to use the linear predictor

x̂
(n)
n+h(m) =

n+h∑
s=h+1

r̂(n)s (m) =
n+h∑

s=h+1

m∑
k=1

pskzk .(3.28)

Since we have ignored the information of the remaining (higher) frequencies of the
process (k = m + 1, · · · , n), by using (3.1) and (3.2), the prediction error can be
written as

x̂
(n)
n+h(m)− x

(n)
n+h =

m∑
k=1

n+h∑
s=h+1

n∑
j=1

psj(C
−1
n Vn)kj .+

n∑
k=m+1

n+h∑
s=h+1

n∑
j=1

psj(C
−1
n Xn)kj ,

which can be simplified by an elementary evaluation such that

n+h∑
s=h+1

psk =
1√

2n+ 1

n+h∑
s=h+1

[ei
2π

2n+1
(n+h)(k− 1

2
)(s− 1

2
) + e−i 2π

2n+1
(n+h)(k− 1

2
)(s− 1

2
)]

=
1√

2n+ 1

sin 2π
2n+1

(n+ h)(k − 1
2
)− sin 2π

2n+1
h(k − 1

2
)

sin 2π
2n+1

1
2
(k − 1

2
)

.

For an illustration, we consider the case when the noise terms of vi and v
(x)
i (i =

1, · · · , n) are sequences of i.i.d. random variables and p = 1. (We take the variances
as σ2

v and σ2
x, respectively.) By using a∗kn (k = 1, · · · ,m) in (2.8), we can derive the

prediction MSE as

MSEm =
4σ2

v

2n+ 1

m∑
k=1

[sin
2π

2n+ 1
(n+ h)(k − 1

2
)− sin

2π

2n+ 1
h(k − 1

2
)]2

+
σ2
x

2n+ 1

n∑
k=m+1

[
sin 2π

2n+1
(n+ h)(k − 1

2
)− sin 2π

2n+1
h(k − 1

2
)

sin 2π
2n+1

1
2
(k − 1

2
)

]2 .(3.29)

As a typical example, we set σ2
v = 2, σ2

x = 1, h = 4, n = 100. The minimum value of
MSE is attained when m∗ = 23.

We have the trade-off of two terms in the predictive MSE. We notice that the first
term is an increasing function of m, while the second term is a decreasing function of
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m. A point of m∗ exists such that MSE(m) is minimized. Several criteria based on
the prediction MSE could be developed by using (3.29). Because the prediction MSE
depends on the unknown parameters of σ2

x and σ2
v even when p = 1 and the i.i.d.

case, we must replace them in a simple manner. When p ≥ 1, it would be possible to
extend the above argument. Form the above consideration on the predictive MSE of
state variables in this section, some method based on frequency domain in Section
4 may be practically important.

4. Frequency Domain Interpretation

4.1 On Spectral Representation and Likelihood

Let f∆x(λ) and fv(λ) be the spectral density (p × p) matrices of ∆xi and vi (i =
1, · · · , n). Then

fv(λ) = (
∞∑

j=−∞
C

(v)
j e2πiλj)Σ(v)

e (
∞∑

j=−∞
C

(v)′

j e−2πiλj) (−1

2
≤ λ ≤ 1

2
)(4.1)

and

f∆x(λ) = (
∞∑

j=−∞
C

(x)
j e2πiλj)Σ(x)

e (
∞∑

j=−∞
C

(x)′

j e−2πiλj) (−1

2
≤ λ ≤ 1

2
) ,(4.2)

where we set C
(v)
0 = C

(x)
0 = Ip as normalizations and i2 = −1.

Then, the relation between the p×p spectral density matrix of the transformed vector
process, which are observable, and the spectral density of the observed difference
series ∆yi (= yi − yi−1) can be represented as

f∆y(λ) = f∆x(λ) + (1− e2πiλ)fv(λ)(1− e−2πiλ) .(4.3)

We denote the long-run variance-covariance matrices of trend components and sta-
tionary components for g, h = 1, · · · , p as

Σx = f∆x(0) (= (σ
(x)
gh )) , Σv = fv(0) = (σ

(v)
gh ) .(4.4)

Let f (SR)
v (λk), f

(SR)
s (λk), and f

(SR)
∆x (λk) be the symmetrized p× p spectral matrices

of vi, si and ∆xi at λk (= (k − 1
2
)/(2n + 1)) for k = 1, · · · , n, that is, f (SR)

v (λk) =

(1/2)[f (SR)
v (λk)+ f̄ (SR)

v (λk)] and f
(SR)
∆x (λk) = (1/2)[f

(SR)
∆x (λk)+ f̄

(SR)
∆x (λk)]. Then, we

find the relation (1− e2πiλk)(1− e−2πiλk) = 2[1− cos 2πλk] = 4 sin2[π
k− 1

2

2n+1
].

Since the orthogonal processes are approximately distributed as the Gaussian dis-
tribution, given the initial conditions (y0 in the causal representation or yn in the
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non-causal representation), (-2) times the conditional log-likelihood function in the
general model can be approximated as

(−2)ln(θ) =
n∑

k=1

log |a∗knf (SR)
v (λk) + f

(SR)
∆x (λk)|(4.5)

+
n∑

k=1

z
′

k[a
∗
knf

(SR)
v (λk) + f

(SR)
∆x (λk)]

−1zk .

When v
(x)
i and vi are mutually independent random variables, given the initial

conditions (y0 or yn), (-2) times the conditional log-likelihood function an be ap-
proximated as (−2)ln(θ) =

∑n
k=1 log |a∗knΣv +Σx| +

∑n
k=1 z

′
k[a

∗
knΣv +Σx]

−1zk and
θ is a vector of parameters.
As an application, by taking a positive integerm (= [mn]) andmn = nα (0 < α < 1),
Kunitomo and Sato (2021) proposed the SIML estimator of Σ̂x by

Σ̂x,SIML =
1

m

m∑
k=1

zkz
′

k .(4.6)

It has consistency when 0 < α < 1 and the asymptotic normality when 0 < α < .8
as n → ∞.

In the forward smoothing, we may use the causal MA representation of the sta-
tionary process and discussed its interpretation in their Section 5. In the backward
smoothing, we need the non-causal MA representation of the stationary process. For
causal and non-causal MA models, we refer to Chapter 4 of Brockwell and Davis
(1990).

4.2 Frequency Decomposition

At first glance, the SIML smoothing method might appear to be an ad-hoc sta-
tistical procedure lacking a solid mathematical foundation. However, upon closer
examination, we can establish a robust statistical basis for this method. The justifi-
cation for SIML smoothing deviates from the standard approaches commonly used
in traditional time series analysis in the frequency domain. (For related discussions,
see Doob (1953), Brockwell and Davis (1990), and their extensions to nonstationary
processes, including Brillinger and Hatanaka (1969) and Brillinger (1980).)

For λ
(n)
k = (k − 1/2)/(2n+ 1) (k = 1, · · · , n), from (2.5) and (3.6), we rewrite

zk(λ
(n)
k ) =

n∑
j=1

r
(n)
j [

2√
2n+ 1

cos[2πλ
(n)
k (j − 1

2
)](4.7)

where r
(n)
j = y

(n)
j − y

(n)
j−1 (j = 1, · · · , n) with the initial condition y0, and

z∗k(λ
(n)
k ) =

n∑
j=1

r
(n)∗
j−1 [

2√
2n+ 1

sin[2πλ
(n)
k j](4.8)
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where r
(n)∗
j−1 = y

(n)
j−1 − y

(n)
j (j = 1, · · · , n) with the initial condition yn.

The situation is that under the assumption of (4.1)-(4.3), both r
(n)
j and r

(n)∗
j are

stationary processes with the spectral density, which are consistent with (4.7)-(4.8).
Then, by using the inversion transformations with Pn and P∗

n, we find that

r(n)s =
n∑

k=1

pskzk(λ
(n)
k ) , r

(n)∗
s−1 =

n∑
k=1

p∗skz
∗
k(λ

(n)
k )(4.9)

They correspond to the representation of Rn = (r
(n)′

i ) = C−1
n X̂n(Q) with Qn = In,

and R∗
n = (r

∗(n)′
i−1 ) = C

′−1
n X̂∗

n(Q
∗) with Q∗

n = In, respectively. Then, by using
Yn = CnRn and Y∗

n = C
′
nR

′
n, we recover the nonstationary processes given the

initial condition as y
(n)
t = y0 +

∑t
s=1 r

(n)
s and y

(n)
t = yn +

∑n−(t+1)
s=1 r

∗(n)
n−s.

In the statistical time series analysis, a set of observation is regarded as a realization
of stochastic proces with discrete time as j = 1, · · · , n (the time interval is fixed)
while the spectral density matrix is represented in the continuous frequency variable
λ ∈ [0, 1

2
], some care should be necessary to interpret our smoothing (or filtering)

method.
Define the coefficients as

αn(λ
(n∗)
m , j − 1

2
) =

1

n

m∑
k=1

[2 cos 2πλ
(n)
k (j − 1

2
)](4.10)

and

βn(λ
(n∗)
m , j) =

1

n

m∑
k=1

[2 sin 2πλ
(n)
k j] ,(4.11)

where λ
(n)
k = (k − 1

2
)/(2n + 1) and λ(n∗)

m = m/(2n + 1) (k,m = 1, · · · , n). By uti-
lizing some trigonometric relations, we obtain αn(λ

(n∗)
m , j) = 2 sin 2π[m/(2n+1)](j−

1
2
)/[2 sin π (j−1

2
)/(2n+1)] and βn(λ

(n∗)
m , j) = 2[1−cos(2πmj/(2n+1))]/[2 sin πj/(2n+

1)]. When λ∗(n)
m → λ as n → ∞ (0 < λ < 1

2
), we find

αn(λ
(n∗)
m , j − 1

2
) → α(λ, j) =

2 sin 2πλ (j − 1
2
)]

π (j − 1
2
)

and

βn(λ
(n∗)
m , j) → β(λ, j) =

2[1− cos 2πλ j]

π j
,

respectively.
If we set the stochastic processes of uncorrelated increments with continuous param-
eter λ (0 ≤ λ ≤ 1

2
) as An(λ) =

∑n
j=1 α(λ, j − 1

2
)r

(n)
j and Bn(λ) =

∑n
j=1 β(λ, j)r

∗(n)
j−1 ,

then dAn(λ) = 4[
∑n

j=1(cos 2πλ(j−1
2
))r

(n)
j ]dλ and dBn(λ) = 4[

∑n
j=1(sin 2πλj)r

∗(n)
j−1 ]dλ.

Hence, we find ∫ 1
2

0
cos[2πλ(s− 1

2
)]dAn(λ) = r(n)s (s = 1, · · · , n) .(4.12)
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and ∫ 1
2

0
sin[2πλs]dBn(λ) = r

∗(n)
s−1 (s = 1, · · · , n) ,(4.13)

respectively.
They correspond to the continuous representation of a discrete (real-valued) station-
ary time series in the frequency domain (refer to Chapter 7.4 of Anderson (1971)).
If we write the limits of A = limn→∞ An(λ) and B = limn→∞Bn(λ) (assuming
that they exist), then the (real-valued) spectral distribution matrix FRS for any
0 ≤ λ1 < λ2 ≤ 1/2 can be defined as

FRS(λ2 − λ1) = E[(A(λ2 − λ1)A(λ2 − λ1)
′
] = E[(B(λ2 − λ1)B(λ2 − λ1)

′
]

=
∫ λ2

λ1

fRS(λ)dλ

if FRS is absolutely continuous and the matrix-valued density process fRS(λ) (0 ≤
λ1 < λ2 ≤ 1/2) exists.

We set R̂n(m) = (r̂
(m,n)′

i ) = C−1
n X̂n(m) and r̂

(m,n)
i are p × 1 vectors for i =

1, · · · , n in the forward filter. Also we set R̂∗
n(m) = (r̂

∗(m,n)′

i ) = C
′−1
n X̂∗

n(m) and

r̂
∗(m,n)
i are p × 1 vectors for i = 1, · · · , n in the backward filter. Because R̂n(m) =
C−1

n PnQ
(n)
m Zn and R̂∗

n(m) = C
′−1
n P∗

nQ
(n)
m Z∗

n, we may write

r̂(m,n)
s =

m∑
k=1

pskzk(λ
(n)
k ) (s = 1, · · · ,m; 0 < m < n),(4.14)

and

r̂
∗(m,n)
s−1 =

m∑
k=1

p∗skz
∗
k(λ

(n)
k ) (s = 1, · · · ,m; 0 < m < n).(4.15)

For the trend-cycle smothing with [1,m] (1 < m ≤ n) and λ(n∗)
m = m/(2n + 1) (∼

(1/2)(m/n) in the low frequency, which corresponds to the maximum frequency of
the trend-cycle part of the time series. Then (4.14) and (4.15) correspond to

r(n)s (0, λ(n∗)
m ) =

∫ λ
(n∗)
m

0
cos[2πλ (s− 1

2
)]dAn(λ)(4.16)

and

r
(n)
s−1(0, λ

(n∗)
m ) =

∫ λ
(n∗)
m

0
sin[2πλ s]dBn(λ) ,(4.17)

respectively, where An(λ) =
∑n

j=1 α(λ, j − 1
2
)r

(n)
j and Bn(λ) =

∑n
j=1 β(λ, j)r

∗(n)
j−1 .

Thus, we have an analogous interpretation of each term as the trend-cycle filtering
representation of orthogonal processes.

17



Similarly, for the band smoothing with [m1 +1,m1 +m2] (1 < m1 < m1 +m2 < n),
we set

r̂(m1,m2,n)
s =

m1+m2∑
k=m1+1

pskz
(n)
k (λ

(n)
k ) = r̂(m2,n)

s − r̂
(m1,n)
s−1

and

r̂
∗(m1,m2,n)
s−1 =

m1+m2∑
k=m1+1

pskz
∗(n)
k (λ

(n)
k ) = r̂

∗(m2,n)
s−1 − r̂

∗(m1,n)
s−1

(s = 1, · · · ,m; 0 < m1 < m2 < n). Then, we have an analogous interpretation
of each term as the band filtering representation of orthogonal processes. They
correspond to

r(n)s (λ(n∗)
m1

, λ(n∗)
m2

) =
∫ λ

(n∗)
m2

λ
(n∗)
m1

cos[2πλ (s− 1

2
)]dAn(λ)(4.18)

and

r
∗(n)
s−1 (λ

(n∗)
m1

, λ(n∗)
m2

) =
∫ λ

(n∗)
m2

λ
(n∗)
m1

sin[2πλ s]dBn(λ) .(4.19)

In this way, it is possible to interpret the smoothing method from the frequency
domain of the multivariate time series.

5. A Numerical Example

We applied the SIML-forward and SIML-backward smoothing methods to the
monthly U.S. Manufacturers’ new orders data from 2010 to 2020 to illustrate their
effectiveness. This dataset is well-suited for demonstrating our methodology due to
its nonstationary nature, combining trends, strong seasonal fluctuations, noise, and
occasional abrupt changes, including potential outliers. These characteristics make
it critical to investigate the effects of initial conditions on the smoothing results,
particularly when dealing with economic time series. Figures 1 and 2 display the
original data, serving as a reference for the smoothing outcomes.

In the forward smoothing results, the red curve in Figure 1 represents the
smoothed series using the first observation as the initial condition (m = 5). The
green curve shows T ∗

1 , the limit obtained through forward-backward iterations, while
the violet curve corresponds to a two-step forward filtering process where the first
smoothing used m1 = 15 and the second smoothing used m = 5. Similarly, in
the backward smoothing results shown in Figure 2, the blue curve represents the
smoothed series using the last observation as the initial condition m = 5), the sky-
blue curve shows T ∗

2 , the limit obtained through backward-backward iterations, and
the violet curve corresponds to a two-step backward filtering process with m1 = 15
for the first smoothing and m2 = 5 for the second smoothing.

The analysis reveals that the initial conditions for both forward and backward
smoothing have a significant impact on the smoothed time series near the starting
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Figure 1: Forward filtering results for monthly US Manufacturers’ New Orders from 2010 to
2020. (https://www.census.gov/manufacturing/m3/index.html)

points. However, as iterations are repeated or multi-step smoothing is applied,
the influence of the initial values diminishes. After a few steps, the differences
between the forward and backward smoothing results become negligible for practical
purposes. This observation aligns with the theoretical findings discussed in Section
3 regarding the impact of initial conditions on SIML smoothing.

The U.S. Manufacturers’ new orders data provided an extreme case where the ef-
fects of initial conditions were particularly pronounced. However, in many empirical
applications, the forward and backward smoothing procedures yield similar results
without requiring additional iterations. This consistency underscores the robustness
of the SIML smoothing methods for handling complex time series with trend, cycle,
seasonal component, and noise.
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Figure 2: Backward filtering results for monthly US Manufacturers’ New Orders from 2010 to
2020. (https://www.census.gov/manufacturing/m3/index.html)

6 Detecting Recent Hidden Change Point

6.1 A Simple Case

We consider the problem of detecting recent breaks in time series. In the standard
time analysis, it is often difficult to distinguish the structural breaks and temporal
irregular noise components based on the observed noisy non-stationary time series.
We propose to use the state estimation and filtering based on the SIML method.
For the simplicity, we consider the case when p = 1 and the basic non-stationary
errors-in-variables model in this subsection.

For an n × 1 vector an(1) = en − en−1, we denote the difference of the state
variable followed by I(1) process, an(1)

′
Xn = xn − xn−1, where n× 1 state vector is

given as Xn = (xi), i = 1, · · · , n.
To estimate the recent change of the true state variable, it is useful to investigate

whether the estimated difference is larger than the usual quantity. For this purpose,
first we use the estimator based on the forward filtering of X̂n as

∆̂(f)xn−h = an−h(1)
′
X̂

(f)
n−h = x̂

(f)
n−h − x̂

(f)
n−h−1 ,(6.1)

where h is a fixed nonnegative integer.
By using a

′
n(1)Cn = e

′
n, we investigate the asymptotic properties of the statistic

∆(f)xn, it is asymptotically normal. We summarize the result.

Proposition 6.1 : In the basic non-stationary errors-in variables model (p=1)
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where ∆xi = xi − xi−1 = v
(x)
i and vi (i = 1, · · · , n are i.i.d. random variables with

E[v
(x)
i ] = E[vi]0, E[(v

(x)
i )2] = σ2

x and E[v2i ] = σ2. As m,n → ∞ and m/n → 0

Wf,n−h =

√√√√[
3

2π2(h+ 1)2
(
n3

m3
)∆̂(f)xn−h

d−→ N(0, f∆y(0)) ,(6.2)

where h is a (fixed) non-negative integer and f∆y(0) is the spectral density of ∆yn
at λ = 0.

Given the initial condition y0, it is possible to estimate the value of the spectral
density at λ = 0 by using the data ∆yi (i = 1, · · · , n).

Then, the t-type statistic can be defined by

Tn =
Wf,n√
f̂∆y(0)

.(6.3)

When n is large, the distribution of this statistic follows approximately as N(0, 1).
It is important notice that we do not assume a particular underlying distribution
and it is a non-parametric method of detecting recent structural changes.

When∆xn is a sequence of i.i.d. random variables, we have Var[∆y] = σ2
x+2σ2

v .
Then, the spectral density at zero frequency becomes the volatility of y as f∆y(0) =
σ2
∆x.
In many macroeconomic variables, we occasionally observe jumps in the data.

However, it is often challenging to determine whether these jumps are merely ir-
regular temporal noise or the onset of a significant break or shift in the trend-cycle
component of the time series. If the observed jump represents a change point mark-
ing the beginning of a new trend, the series will not revert to its original trend-cycle
components. In such cases, the following result is useful for detecting breaks in time
series data. Then, the next result is useful to detect breaks of time series.

Proposition 6.2 : In the basic non-stationary errors-in variables model, as m,n →
∞ and m/n → 0, ∑h

k=0W
2
f,n−k

c(h)f̂∆y(0)

d−→ χ2(1)(6.4)

where h is a non-gegative (fixed) integer, c(h) =
∑h

k=0 k
2, and f̂∆y(0) is a consistent

estimate of the spectral density of ∆yn at zero frequency.

If we take h = 0 and c(0) = 1, it corresponds to detect breaks at one time n. When
there is a structural break in the trend-cycle components, the effects continue. In
this sense, it would be desirable take several periods as h > 1. The approximation
reported in Proposition 6.2 is reasonable when h is not large (c(0) = 1, c(1) =
5, c(1) = 14, · · ·. Whever, we expect that when h is large, the power of detecting
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structural change becomes low.

Next, we consider the estimation of the hidden state variable based on the
backward-filtering. Let the forward-filtering estimate of the state at the period
n − h (h ≥ 0) be ∆̂(f)xn−h, and the backward-filtering estimate of the state at the
period n− h (h ≥ 0) be ∆̂(b)xn−h. Then, it is possible to use the statistic

dn−h = ∆̂(b)xn−h − ∆̂(f)xn−h .

Because the difference of the state variable, which is an I(1)-process, can be writ-
ten as an−h(1)

′
Xn = xn−h − xn−h−1, we define the backward-filtering estimate as

∆̂(b)xn−h = −an+1−h(1)
′
X̂∗

n = x̂
(b)
n−h − x̂

(b)
n−h−1, we have the following result. 2.

Proposition 6.3 : Let h be a positive integer. In the basic non-stationary errors-in
variables model (p=1) as Proposition 6.1. As m,n → ∞ and m/n → 0,

Wb,n−h =

√
(
1

2
)(
n

m
)∆̂(b)xn−h

d−→ N(0, f∆y(0)) ,(6.5)

where f∆y(0) is the spectral density of ∆yn at λ = 0.
(ii) As n → ∞ and m/n → 0,

Wb,f,n =

√
(
1

2
)(
n

m
)dn−h

d−→ N(0, f∆y(0)) .(6.6)

(iii) As m,n → ∞, m/n → 0,∑h
k=0 W

2
b,f,n−k

hf̂∆y(0)

d−→ χ2(1) .(6.7)

Although the asymptotic distributions of two statistics have the same form, they
can be considerably different because the second statistic incorporates both forward-
backward information. Then, the power of detecting change points may be larger
than the first one.

There can be many ways to combine the forward-filtering and the backward-filtering
such as the multi-step filtering. Let the number of frequencies in the forward-filtering

2In the backward-filtering method, the initial period is n and the asymptotic behavior is different

from ∆̂(b)xn = x̂
(f)
n − x̂

(b)
n−1. The exact distribution of y

(f)
n − y

(b)
n−1 depends on the initial conditions

and noise at n.
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be m1 and the number of frequencies in the backward-filtering be m2, and we denote
the resulting statistic as ∆̂(s)xn−h. We assume the condition

(Condition A)
m1

n
−→ c (0 ≤ c ≤ 1).

Let h be a positive integer. In the basic non-stationary errors-in variables model,
assume (Condition A) and m2, n → ∞. Then, the asymptotic distribution of

Ws,n−h =
√
(1
2
)( n

m2
)∆̂(s)xn−h can be written as N(0, vnf∆y(0)), where f∆y(0) is the

spectral density of ∆yn at λ = 0,

vn = 1 + 2a(
m2

n
) , a =

1

2

∫ 1

c
[
cos π

2
x

sin π
2
x
]2dx ,(6.8)

See the Appendix for the derivation.

The constant a depends on c such that

a =
1

2
[
2

π
(
cos π

2
c

sin π
2
c
)− (1− c)] .

When c = 0 or c = 1, vn = 1 because a = 0.

6.2 The General Case

In the general case of (2.1) and (2.2) with p = 1, let yi = xi + vi, ∆xi = v
(x)
i ,

and vi(i = 0, 1, · · · , n). The noise component and the state variables component

v
(x)
i (= ∆xi) are sequences of the stationary processes satisfying

vi =
∞∑

j=−∞
C

(v)
j e

(v)
i−j(6.9)

and

v
(x)
i =

∞∑
j=−∞

C
(x)
j e

(x)
i−j ,(6.10)

where e
(v)
i and e

(x)
i are sequences of i.i.d. random variables with E(e

(v)
i ) = E(e

(x)
i ) =

0, E(e
(v)
i e

(v)′

i ) = Σ(v)
e and E(e

(x)
i e

(x)′

i ) = Σ(x)
e .

For normalization we use C
(v)
0 = C

(x)
0 = Ip. The p× p coefficient matrices C

(v)
j and

C
(x)
j (j = · · · ,−1, 0, 1, · · ·) in (6.9) and (6.10) are absolutely summable such that∑∞
j=−∞ ∥C(v)

j ∥ < ∞ and
∑∞

j=−∞ ∥C(x)
j ∥ < ∞, where ∥C(v)

j ∥ = maxk,l=1,···,p |c(v)k,l (j)|
for C

(v)
j = (c

(v)
k,l (j)) and ∥C(x)

j ∥ = maxk,l=1,···,p |c(x)k,l (j)| for C
(x)
j = (c

x)
k,l(j)), respec-

tively. The measurement error vector vi may include the seasonal component si
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when the main interest is to understand the trend factors as the state vector in the
low frequency part, which is less than a year.

Alternatively, the state variables ∆xi (= v
(x)
i ) may include the seasonal compo-

nents satisfying si =
∑∞

j=−∞ C
(s)
sj e

(s)
i−sj (s ≥ 2) and e

(s)
i is a sequence of i.i.d. random

vectors with E(e
(s)
i ) = 0 and E(e

(s)
i e

(s)′

i ) = Σ(s)
e (the coefficients C

(s)
sj are absolutely

summable
∑∞

j=−∞ ∥C(s)
j ∥ < ∞).

The above formulation of (4.1) and (4.2) includes the non-stationary errors-

in-variables model with the causal representation vi =
∑∞

j=0C
(v)
j e

(v)
i−j , v

(x)
i =∑∞

j=0 C
(x)
j e

(x)
i−j, and the non-causal representation vi =

∑0
j=−∞C

(v)
j e

(v)
i−j , v

(x)
i =∑0

j=−∞C
(x)
j e

(x)
i−j, respectively, in (6.9) and (6.10).

In the general non-stationary errors-in-variables model with p = 1, Proposition
6.1 for the forward filtering method can be extended as follows.

Theorem 6.4 : In the general non-stationary errors-in-variables model given by
(2.1) and (2.2), as m,n → ∞ and m/n → 0,

Wf,n =

√√√√[
3

2π2(h+ 1)2
](
n3

m3
)∆̂xn−h

d−→ N(0, f∆y(0)) ,(6.11)

where f∆y(0) is the spectral density of ∆yn at λ = 0.

Propositions 6.3 for the backward-forward filtering methods can be extended as
follows.

Theorem 6.5 : In the general non-stationary errors-in variables model with p = 1
given by (2.1) and (2.2), as m,n → ∞ and m/n → 0,

Wb,n−h =

√
(
1

2
)(
n

m
)∆̂(b)xn−h

d−→ N(0, f∆y(0)) ,(6.12)

where f∆y(0) is the spectral density of ∆yn at λ = 0.
(ii) As n → ∞ and m/n → 0,

Wb,f,n =

√
(
1

2
)(
n

m
)dn−h

d−→ N(0, f∆y(0)) .(6.13)

(iii) As m,n → ∞, m/n → 0,∑h
k=0 W

2
b,f,n−k

hf̂∆y(0)

d−→ χ2(1) .(6.14)
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6.3 An Application of Macroconsumption

As an example, we applied the SIML-forward and SIML-backward filtering methods
to analyze real final consumption (shouhi) data published by the Cabinet Office
of Japan, covering the period from 1994Q1 to 2020Q4. The analysis focuses on
the period from 2020Q1 to 2020Q4, as the COVID-19 pandemic caused significant
disruptions. In particular, macroeconomic consumption exhibited a sharp decline
in 2020Q2, followed by a gradual recovery. However, it took considerable time to
return to pre-pandemic levels.

For this analysis, we set m = [n/6], corresponding to trend-cycle components
with cycles longer than three years. This choice ensures that the hidden trend
variables are defined in the low-frequency range. The red curves in Figures 6.1 and
6.2 show the estimated results of the forward-filtering procedure.

Table 6.1 : t-statistic in the forward-filtering

h/Period 2019Q3 2023Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2

h=0 0.295 0.170 -0.275 -2.217 -2.556 -2.435 -2.119 -1.702
h=1 0.247 0.131 -0.277 -2.054 -2.232 -1.963 -1.602 -1.098
h=2 0.179 0.075 -0.276 -1.802 -2.082 -1.923 -1.725 -1.447
h=3 0.105 0.015 -0.267 -1.486 -1.722 -1.545 -1.432 -1.253

Table 6.2 : t-statistic in the backward-filtering

h/Period 2019Q3 2023Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2

h=0 0.140 -0.105 -0.712 -3.153 -2.937 -1.542 -0.925 -0.464
h=1 0.0996 -0.074 -0.579 -2.734 -2.720 -1.846 -1.450 -1.097
h=2 0.053 -0.041 -0.419 -2.193 -2.430 -2.189 -2.074 -1.867
h=3 0.016 -0.014 -0.268 -1.612 -2.097 -2.468 -2.644 -2.602

Tables 6.1 and 6.2 summarize the t-statistics obtained from the forward and back-
ward filtering methods, respectively. These statistics were calculated using data
sequentially for the periods 1994Q12020Q1, 1994Q12020Q2, 1994Q12020Q3, and
1994Q12020Q4. The standard errors were derived based on the asymptotic distri-
butions described in Propositions 6.1 and 6.3. An estimate of f(∆y0) was obtained
as σ̂2

x = 1
m

∑m
i=1 z

2
i . (See Chapter 2 of Kunitomo and Sato (2024).)

The following observations are noteworthy: (i) The forward filtering method
(6.2) detected a significant structural break in hidden consumption during 2020Q2,
as evidenced by the t–statistics. Subsequent t-values remained significant, reflecting
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Figure 4: Original Series and Estimated Trend
(1994Q1-2020Q2)

the lasting effects of state variable estimation. (ii) The backward filtering method
(6.5) also identified a significant structural break in 2020Q2. However, the influence
of state variable estimation diminished in later periods, suggesting that the effects of
the initial conditions do not persist for long durations. Figures 3-6 show the original
series and estimated trends for each analyzed period. These results underscore
the practical applicability of the SIML method in identifying structural breaks and
understanding long-term trends in economic time series.

These results confirm the ability of both forward and backward filterings to
detect recent change points in macroeconomic data

7. Conclusions

When observed nonstationary time series contain noise, disentangling the effects of
trends, cycles, and noise from the original data can be challenging, particularly when
the sample size is small, as is often the case with major macroeconomic time series.
This study introduces a new statistical smoothing procedure designed to decompose
time series into nonstationary trend, seasonal, and stationary noise (or measurement
error) components.

The proposed smoothing or filtering method for nonstationary series is simple
and does not rely on the underlying distributions of the noise or the state vector.
As a result, it is robust against potential misspecifications in the nonstationary time
series models, making it a reliable tool for practical applications.

It is worth noting that, while there has been extensive research on structural
breaks in statistical time series, relatively few studies have focused on detecting re-
cent structural breaks in noisy nonstationary time series. This gap highlights the
importance of methods capable of identifying such breaks effectively. To demon-
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strate the practical utility of the proposed method, we provide an empirical exam-
ples using macroeconomic data in Japan. The recent example suggests that our
approach is valuable for interpreting macroeconomic data and improving seasonal
adjustment procedures.
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APPENDIX : Mathematical Derivations

We present here some details of derivations that we have omitted in the previous
sections. Most of our derivations is to apply trigonometric relations, which are
mathematically elementary and straightforward. Hence, we show only the essential
parts of derivations, and first prepare a key lemma on the characteristic roots and
eigen vectors of a patterned matrix, Then, we show the proof of theorems.

Lemma A.1 : (i) Define n× n matrices An and A∗
n by

An =
1

2


1 1 0 · · · 0
1 0 1 · · · 0
0 1 0 1 · · ·
0 0 · · · 0 1
0 · · · 0 1 0

(A.1)

and

A∗
n =

1

2


0 1 0 · · · 0
1 0 1 · · · 0
0 1 0 1 · · ·
0 0 · · · 0 1
0 · · · 0 1 1

 .(A.2)

Then, cos π( 2k−1
2n+1

) (k = 1, · · · , n) are eigen-values of An and A∗
n, and their eigen-

vectors are
cos[π( 2k−1

2n+1
)(1− 1

2
)]

cos[π( 2k−1
2n+1

)(2− 1
2
)]

...
cos[π( 2k−1

2n+1
)(n− 1

2
)]

 ,


sin[π( 2k−1

2n+1
)1]

sin[π( 2k−1
2n+1

)2]
...

sin[π( 2k−1
2n+1

)n]

 (k = 1, · · · , n),(A.3)
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respectively.
(ii) We have the spectral decompositions

C−1
n C

′−1
n = P

′

nDnPn = 2In − 2An ,(A.4)

and
C

′−1
n C−1

n = P∗′
nDnP

∗
n = 2In − 2A∗

n ,(A.5)

where P∗′ is the matrix consisting of eigen-vectors in (A.2), Dn is a diagonal matrix
with the k−th element

dk = 2

[
1− cos(π(

2k − 1

2n+ 1
))

]
(k = 1, · · · , n) ,(A.6)

C
′−1
n =


1 −1 · · · 0 0
0 1 −1 · · · 0
0 0 1 −1 · · ·
0 0 0 1 −1
0 0 0 0 1

(A.7)

and the (k, j)−the element of Pn = (pkj) and P∗
n = (p∗kj) are given by

pkj =

√√√√ 2

n+ 1
2

cos
[

2π

2n+ 1
(k − 1

2
) (j − 1

2
)
]
,(A.8)

and

p∗kj =

√√√√ 2

n+ 1
2

sin
[

2π

2n+ 1
(k − 1

2
) j
]
.(A.9)

Proof of Lemma A.1 : The proof of A∗
n is a direct calculation and we omit

the proof for An because it is essentially the same.
(i) Let A∗

n = (a∗ij) (i, j = 1, · · · , n) and an n × 1 vector x = (xt) (t = 1, · · · , n)
satisfying A∗

nx = λx . Then,

x2

2
= λx1 ,

xt−1 + xt+1

2
= λxt (t = 2, · · · , n− 1) ,(A.10)

1

2
[xn−1 + xn] = λxn .

Let ξi (i = 1, 2) be the solutions of ξ2 − 2λξ + 1 = 0. Because 2λ = ξ1 + ξ2 and
ξ1ξ2 = 1, we have the solution as xt = c1ξ

t
1 + c2ξ

−t
1 (t = 1, · · · , n) and ci (i = 1) are

real constants. The first equation implies 0 = c1ξ
2
1 + c2ξ

−2
1 − (ξ1+ ξ−1

1 )(c1ξ1+ c2ξ
−1
1 ),

and c1+ c2 = 0 . Then, we find that xt = c1[ξ
t
1− ξ−t

1 ], and the third equation implies
(ξ2n+1

1 + 1)(1− ξ1) = 0. Because ξ1 ̸= 1, we find that ξ2n+1
1 = −1 = eπi(2k−1) for any
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positive integer k.
Then,

λk = cos[π
2k − 1

2n+ 1
] (k = 1, · · · , n) .(A.11)

By taking c1 = (1/2i), the elements of the characteristic vectors ofA∗
n with cos[π(2k−

1)/(2n+ 1)] are

xt =
1

2i

[
ξt1 − ξ−t

1

]
= sin

[
π
2k − 1

2n+ 1
t

]
.(A.12)

(ii) The rest of the proof involves the standard arguments of spectral decomposition
in linear algebra. Q.E.D.

Proof of Theorem 3.1 :

(Step I)

We consider the case of T
(m)
2k−1 (k ≥ 1). By using the recursive relations, for k ≥ 1

we represent
T

(m)
2k+1 = A

(m)
1 + A

(m)
2 T

(m)
2k−1 ,(A.13)

where an n× n matrix A
(m)
2 is defined by

A
(m)
2 = (In −CnPnJ

′

mJmPnC
−1
n )1ne

′

1(In −C
′

nP
∗′
n J

′

mJmP
∗
nC

′−1
n )1ne

′

n .(A.14)

Then, we consider the characteristic roots of the coefficient matrix A
(m)
2 . Because

the rank of A
(m)
2 is one, there are n− 1 zero roots and one non-zero root, which is

a2n = e
′

n(In −CnPnJ
′

mJmPnC
−1
n )1ne

′

1(In −C
′

nP
∗′
n J

′

mJmP
∗
nC

′−1
n )1n(A.15)

= [1− 1‘
nPnJ

′

mJmPne1][1− 1‘
nP

∗′
n J

′

mJmP
∗
nen] .

(We have used the relations as e
′
nCn = 1‘

n and e
′
1C

′
n = 1‘

n.)
By using the relation 1 − 1

′
nPnJ

′
mJmPne1 = 1

′
nPnJ

′
n−mJn−mPne1 for Jn−m =

(O, In−m) ((n − m) × [m + (n − m)] matrix), we evaluate two terms in (A.15).
The first term of (A.15) becomes

[

√√√√ 2

n+ 1
2

]2
n∑

k=m+1

[
n∑

j=1

cos
2π

2n+ 1
(j − 1

2
)(k − 1

2
)]× cos

2π

2n+ 1
(k − 1

2
)(1− 1

2
)] ,

which is less than 1. We show this key fact in the following. We take the summation
with respect to n as

[
2

2n+ 1
]

n∑
k=m+1

[[
sin 2π

2n+1
(k − 1

2
)n

sin π
2n+1

(k − 1
2
)
]× cos

2π

2n+ 1
(k − 1

2
)(1− 1

2
)]

and the relation

sin
π

2n+ 1
(k − 1

2
)[2n+ 1− 1] = sin π(k − 1

2
) cos

π

2n+ 1
(k − 1

2
) .
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Then the first term of (A.15) becomes

[
2

2n+ 1
]

n∑
k=m+1

sin π(k − 1

2
)× [

[cos π
2n+1

(k − 1
2
)]2

sin π
2n+1

(k − 1
2
)

] .

By using the facts that (i) sinπ(k− 1
2
) takes +1 and−1 alternatively, (ii) the absolute

value of
[cos π

2n+1
(k− 1

2
)]2

sin π
2n+1

(k− 1
2
)

is a monotone decreasing for k = 1, · · · , n and (iii)

[

√√√√ 2

n+ 1
2

]2
n∑

k=1

[
n∑

j=1

cos
2π

2n+ 1
(j − 1

2
)(k − 1

2
)]× cos

2π

2n+ 1
(k − 1

2
)(1− 1

2
)] = 1

(See Lemma A.2 below), then, 1
′
nPnJ

′
n−mJn−mPne1 is less than one.

Similarly, for the second term of (A.14), we use

[1− 1
′

nP
∗′
n J

′

mJmP
∗
nen] = 1

′

nP
∗′
n J

′

n−mJn−mP
∗
nen .

Then, the second term of (A.15) becomes

[

√√√√ 2

n+ 1
2

]2
n∑

k=1

n∑
j=m+1

[sin
2π

2n+ 1
(k − 1

2
)j sin

2π

2n+ 1
(n− 1

2
)j ,

which is less than 1. In this evaluation, we utilized the relations (i)

n∑
k=1

sin
2π

2n+ 1
(k − 1

2
)j =

1

2i

ei
2π

2n+1
jn + e−i 2π

2n+1
jn − 2

ei
2π

2n+1
j 1
2 − e−i 2π

2n+1
j 1
2

(A.16)

=
1

2

1− cos 2π
2n+1

jn

sin 2π
2n+1

j 1
2

,

(ii) 1 − cos 2π
2n+1

jn = 1 − cosπj cos 2π
2n+1

j = 1 − (−1)j cos 2π
2n+1

j and (iii) for 2(n −
1/2) = (2n+1)−2, sin 2π

2n+1
(n−1

2
)j = [− cos πj] sin 2π

2n+1
j = 2[− cos πj][sin π

2n+1
j][cos π

2n+1
j] .

Then, the second term becomes

[
4

2n+ 1
]

n∑
k=1

n∑
j=m+1

(−1)j+1[1− (−1)j cos
π

2n+ 1
j] cos

π

2n+ 1
j .

Since for any odd number j and 1 ≤ j ≤ n, [1 + cos π
2n+1

j] cos π
2n+1

j > [1 −
cos π

2n+1
(j + 1)] cos π

2n+1
(j + 1), for any even muber m, we have

∑m
j=1(−1)j+1[1 −

(−1)j cos π
2n+1

j] cos π
2n+1

j > 0. Then, by using the fact

[

√√√√ 2

n+ 1
2

]2
n∑

k=1

n∑
j=+1

[sin
2π

2n+ 1
(k − 1

2
)j sin

2π

2n+ 1
(n− 1

2
)j = 1
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(see Lemma A.2 below), 1
′
nP

∗
nJ

′
n−mJn−mP

∗′
n e1 is less than one.

Because each term of (A.15) is less than one, we have |a2n| < 1. Then, by using
(A.13), we have convergence of T2k+1 as k → ∞.

Lemma A.2 : Let p
(n)
kj =

√
2

n+ 1
2

cos
[

2π
2n+1

(k − 1
2
)(j − 1

2
)
]
and

p
∗(n)
kj =

√
2

n+ 1
2

sin
[

2π
2n+1

(k − 1
2
)j
]
for k, j = 1, · · · , n. Then, for any a, b = 1, · · · , n,

n∑
a=1

n∑
k=1

p
(n)
ka p

(n)
kb =

n∑
a=1

n∑
k=1

p
∗(n)
ka p

∗(n)
kb = 1 ,(A.17)

Proof of Lemma A.2 : We use the orthogonal relations such that for any
a, b = 1, · · · , n,

n∑
k=1

p
(n)
ka p

(n)
kb =

n∑
k=1

p
∗(n)
ka p

∗(n)
kb = δ(a, b) ,(A.18)

where δ(a, a) = 1 and δ(a, b) = 0 for any a ̸= b. Then we have the result.
Q.E.D.

(Step II)

We can apply the similar arguments to T
(m)
2k (k ≥ 1). By using the recursive

relations, for k ≥ 1 we can represent

T
(m)
2k = A

(m)
1∗ + A

(m)
2∗ T

(m)
2(k−1) ,(A.19)

where A
(m)
1∗ and A

(m)
2∗ are n × n matrices as defined in Theorem 3.1. By evaluating

the eigenvalues of A
(m)
2∗ , we find that the absolute value of eigenvalues are less than

one, and we have convergence of T
(m)
2k as k → ∞.

(Q.E.D.)

Proof of Theorem 3.2 :

Our proof is the direct evaluation of trace of Hn and Fn by using the trigonometric
relations, which are elementary. We utilize the fact that Tr(Hn) = Tr(PnQ(m)

n Pn)
and Tr(Fn) = Tr(P∗′

nQ
(m)
n P∗

n). We set H∗
n = (h∗

ab) = PnQ
(m)
n Pn and F∗

n = (f ∗
ab) =

P∗′
nQ

(m)
n P∗

n. From (2.7) and (3.8),

n∑
a=1

h∗
aa =

4

2n+ 1

n∑
a=1

m∑
j=1

[cos
2π

2n+ 1
(a− 1

2
)(j − 1

2
)]2(A.20)

= .
4

2n+ 1

n∑
a=1

m∑
j=1

1

2
[1 + cos

4π

2n+ 1
(a− 1

2
)(j − 1

2
)]

By taking the summation w.r.t. a first, we find

2n+ 1

4
h∗
aa
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=
mn

2
+

1

2

m∑
j=1

n∑
a=1

1

2
[ei

4π
2n+1

(a− 1
2
)(j− 1

2
) + e−i 4π

2n+1
(a− 1

2
)(j− 1

2
)]

=
mn

2
+

1

4

m∑
j=1

[
ei

4π
2n+1

(j− 1
2
) 1
2 (1− ei

4π
2n+1

(j− 1
2
)n)

1− ei
4π

2n+1
(j− 1

2
)

+
e−i 4π

2n+1
(j− 1

2
) 1
2 (1− e−i 4π

2n+1
(j− 1

2
)n)

1− e−i 4π
2n+1

(j− 1
2
)

]

=
mn

2
+

1

4

m∑
j=1

[
1− ei

4π
2n+1

(j− 1
2
)n

e−i 2π
2n+1

(j− 1
2
) − ei

2π
2n+1

(j− 1
2
)
+

1− e−i 4π
2n+1

(j− 1
2
)n

ei
2π

2n+1
(j− 1

2
) − e−i 2π

2n+1
(j− 1

2
)
]

=
mn

2
+

1

4

m∑
j=1

sin 4π
2n+1

(j − 1
2
)n

sin 2π
2n+1

(j − 1
2
)

.

Because sin 4π
2n+1

(j − 1
2
)n = sin π[(2j − 1 − 2j−1

2n+1
)] = [− cos π(2j − 1)][sin π(2j −

1)/(2n+ 1)] and − cosπ(2j − 1) = 1 for any positive integer j, we have

2n+ 1

4

n∑
a=1

h∗
aa =

mn

2
+

m

4
.(A.21)

Similarly,

n∑
a=1

f ∗
aa =

4

2n+ 1

n∑
a=1

m∑
j=1

[sin
2π

2n+ 1
(a− 1

2
)j]2

.
4

2n+ 1

n∑
a=1

m∑
j=1

1

2
[1− cos

4π

2n+ 1
(a− 1

2
)j]

By taking the summation w.r.t. a and j, we find that ,

2n+ 1

4

n∑
a=1

f ∗
aa =

mn

2
− m

4
.(A.22)

Because Tr[Hn − Fn] =
∑n

a=1[h
∗
aa − f ∗

aa], we have the result.
(Q.E.D.)

Proof of Theorem 3.3 :

The proof is basically the same as Theorem 3.1. We replace Q(m)
n = J

′
mJm by

Q(m1,m2)
n = J

′
m1,m2

Jm1,m2 .

Consider T
(m1,m2)
2k+1 = A

(m1,m2)
1 + A

(m1,m2)
2 T

(m1,m2)
2k−1 . Then, the non-zero eigenvalue of

A
(m1,m2)
2 is

a2n = e
′

n(In −CnPnJ
′

m1,m2
Jm1,m2PnC

−1
n )1ne

′

1(In −C
′

nP
∗′
n J

′

m1,m2
Jm1,m2P

∗
nC

′−1
n )1n

= [1− 1‘
nPnJ

′

m1,m2
Jm1,m2Pne1][1− 1‘

nP
∗
nJ

′

m1,m2
Jm1,m2P

∗
nen] .

In this case, we use the relation

[1− 1
′

nPnJ
′

m1,m2
Jm1,m2Pne1] = 1

′

nPnJ
′

m1
Jm1Pne1

+ 1
′

nPnJ
′

m1+m2+1,nJm1+m2+1,nPne1
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and

[1− 1
′

nP
∗′
n J

′

m1,m2
Jm1,m2P

∗
nen] = 1

′

nP
∗′
n J

′

m1
Jm1P

∗
nen

+ 1
′

nP
∗′
n J

′

m1+m2+1,nJm1+m2+1,nP
∗
nen .

Then, by using the same argument as the proof of Theorem 3.1 and Lemma A.2,
we find that the absolute values of the eigenvalues of A

(m1,m2)
2 and A

(m1,m2)
2∗ are less

than one when m1 and m2 are even numbers. Then, we have the convergence of the
repeated smoothing procedures.
(Q.E.D.)

Proof of Proposition 6.1 :
We consider the case when ∆xi = xi − xi−1 = v

(v)
i and vi (t = i, · · · , n) are i.i.d.

sequences. We set the initial conditions x0 = v0 = 0 for the convenience and take h
as a fixed non-negative integer.
Let Xn−h = X1,n−h +X2,n−h (h = 0, 1, · · · , n), where

X1,n−h =
n∑

i=1

[
m∑
j=1

cos
2π

2n+ 1
(n− h− 1

2
)(j − 1

2
) cos

2π

2n+ 1
(j − 1

2
)(i− 1

2
)]v

(x)
i ,

and

X2,n−h =
n∑

i=1

[
m∑
j=1

cos
2π

2n+ 1
(n− h− 1

2
)(j − 1

2
) cos

2π

2n+ 1
(j − 1

2
)(i− 1

2
)]∆vi .

We first evaluate the variance of the first term

Var[X1,n−h] = σ(x)2
n∑

i=1

[
m∑
j=1

cos
2π

2n+ 1
(n− h− 1

2
)(j − 1

2
cos

2π

2n+ 1
(j − 1

2
)(i− 1

2
)]2

= σ(x)2
m∑

j,j′=1

cos
2π

2n+ 1
(n− h− 1

2
)(j − 1

2
) cos

2π

2n+ 1
(n− h− 1

2
)(j

′ − 1

2
)

×[
n∑

t=1

cos
2π

2n+ 1
(j − 1

2
)(t− 1

2
) cos

2π

2n+ 1
(j

′ − 1

2
)(i− 1

2
)]

We use the orthogonal relation

n∑
i=1

cos[
2π

2n+ 1
(j − 1

2
)(i− 1

2
)]× cos[

2π

2n+ 1
(j

′ − 1

2
)(i− 1

2
)] = δ(j, j

′
)[
n

2
+

1

4
] .

Then, we need to evaluate

Var[X1,n−h] = σ(x)2[
n

2
+

1

4
]

m∑
j=1

[cos
2π

2n+ 1
(n− h− 1

2
)(j − 1

2
)]2 .
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Because 2(n − h − 1/2) = 2n + 1 − 2(h + 1), we use the trigonometric relation

cos 2π
2n+1

(n− h− 1
2
)(j − 1

2
) = cos π[1− 2(h+1)

2n+1
(j − 1

2
)] = sin π(j − 1

2
) sin π(h+ 1) 2j−1

2n+1
.

When m/n → 0 as n → ∞,

m∑
j=1

[cos
2π

2n+ 1
(n− h− 1

2
)(j − 1

2
)]2 =

m∑
j=1

[sinπ(h+ 1)
2j − 1

2n+ 1
]2

∼ [
π

n
(h+ 1)]2

m∑
j=1

(
j

n
)2

∼ [
π2(h+ 1)2

3
]
m3

n2

and, then

Var[X1,n−h] ∼ σ(x)2(
π2(h+ 1)2

6
)
m3

n
.

Because the spectral decomposition of C−1
n C

′−1
n = PnDnPn, we have

PnQnPnC
−1
n C

′−1
n PnQnPn = PnQnDnQnPn .

Then, the variance of the second term is

Var[X2,n−h] = σ2
v

m∑
j=1

[cos
2π

2n+ 1
(n− h− 1

2
)(j − 1

2
)]2 × 4 sin2[

π

2

2j − 1

2n+ 1
]

= 4×
m∑
j=1

[sin
π(h+ 1)

2n+ 1
(2j − 1))]2 × sin2[

π

2

2j − 1

2n+ 1
]

= O(
m∑
j=1

(
j

n
)4) = O(

m5

n4
) .

Hence, for their variance of Xn−h the first term is dominant and the order of the
variance becomes

Var[Wf,n ] ∼ (
2

n
)2[Var[X1,n−h]× [

3

2π2(h+ 1)2
(
n

m
)3] ∼ σ2

∆x

when n,m (= mn) → ∞ and m/n → 0.

By using CLT to
√

n3

m3X1,n−h =
∑n

i=1 a
(m,n)
i v

(x)
i since the coefficients a

(m,n)
t t =

1, · · · , n are small as n,m → ∞ while mn → 0,, we have the asymptotic normality.
(Q.E.D.)

Proof of Proposition 6.2 :
We use the simple relations 2(n− h− 1

2
) = 2n+1− 2(h+1), 2(n− 1

2
) = 2n+1− 2

and the trigonometric relations such as cos 2π
2n+1

[2n+ 1− 2(h+ 1)] for a fixed h ≥ 0
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and j = 1, · · · ,m. Then, we find that

cos
2π

2n+ 1
(n− h− 1

2
)(j − 1

2
)− cos

2π

2n+ 1
(n− 1

2
)(j − 1

2
)]

∼ [(−1)j+1π(h+ 1)
2j − 1

2n+ 1
]− [(−1)j+1π

2j − 1

2n+ 1
]

= O(
m

n
) .

Thus, we have the result of Proposition 3.2 because the limiting random variables
Wf,n−k(k = 0, · · · , h) are degenerated.
(Q.E.D.)

Proof of Proposition 6.3 :
For the backward filtering, we use a similar evaluation as Proposition 6.1. We
consider the case when ∆xi = xi − xi−1 = v

(v)
i and vi (i = 1, · · · , n) are i.i.d.

sequences. We set the initial conditions xn = vn = 0 for the convenience and take h
as a fixed positive integer.
Let Xn−h = X3,n−h +X4,n−h (h = 1, · · · , n), where

X3,n−h =
n∑

j=1

[
m∑
k=1

sin
2π

2n+ 1
(k − 1

2
)(n− h) sin

2π

2n+ 1
(k − 1

2
)j]v

(x)
j

and

X4,n−h =
n∑

t=1

m∑
k=1

[sin
2π

2n+ 1
(n− h)(k − 1

2
) sin

2π

2n+ 1
(k − 1

2
)t]∆vt .

Then, by using the orthogonal relation

n∑
i=1

sin[
2π

2n+ 1
(k − 1

2
)i]× sin[

2π

2n+ 1
(k

′ − 1

2
)i] = δ(k, k

′
)[
n

2
] ,

we find that

Var[X3,n−h] = σ(x)2[
n

2
]

m∑
k=1

[sin
2π

2n+ 1
(k − 1

2
)(n− h)]2 .

We use the trigonometric relation sin π
2n+1

[2n + 1 − (2h + 1)](k − 1
2
) = sin π(k −

1
2
) cos π(2h+ 1)k−1/2

2n+1
. When m/n → 0 as n → ∞,

m∑
k=1

[cosπ
2h+ 1

2n+ 1
(k − 1

2
)]2 ∼ m

and

Var[X4,n−h] = O(
m∑
j=1

[cos
π

2n+ 1
(2h+ 1)(j − 1

2
))]2 × sin2[

π

2

2j − 1

2n+ 1
])

=
m∑
j=1

(
j

n
)2 = O(

m3

n2
) .
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Then, for a fixed h (h ≥ 0)

Var[∆̂(b)xn−h] ∼ σ(x)2 4

2n+ 1
m ∼ σ(x)22m

n
.

By using CLT to
√

n3

m3X3,n−h since the coefficients a
(m,n)
t t = 1, · · · , n are small as

n,m → ∞ while mn → 0, we have the asymptotic normality.
(Q.E.D.)

Proof of Theorem 6.4 :
In the more general case, we assume that

ri = ∆xi =
∞∑

s=−∞
γsv

(x)
i−s ,

where (a)
∑∞

s=−∞ |γs| < ∞ and (b) sup
∫
|vt|>c v

2dF (v) −→ 0 (c −→ ∞).

Let ri,k =
∑k

s=−k γsv
(x)
i−s. Then, by using the method of Anderson (1971, Page 482),

we can apply the CLT to the truncated sum to obtain the asymptotic normality
because the difference of ri and ri,k is stochastically negligible as k → ∞.
For a fixed non-negative integer h, let X∗

n−h = X∗
1,n−h+X∗

2,n−h (h = 1, · · · , n), where

X∗
1,n−h =

n∑
i=1

m∑
j=1

A(n− h, i, j)ri,k

=
n∑

i=1

k∑
s=−k

γs
m∑
j=1

A(n− h, i, j)vi−s

=
n−k∑

i=k+1

k∑
s=−k

γs
m∑
j=1

A(n− h, i+ s, j)v
(x)
i +

k∑
i=1−k

k∑
s=−i+1

γs
m∑
j=1

A(n− h, i+ s, j)v
(x)
i

+
n+k∑

i=n−k+1

n−i∑
s=−k

γs
m∑
j=1

A(n− h, i+ s, j)v
(x)
i

= Wf,1n +Wf,2n +Wf,3n (say) ,

where A(n− h, i, j) = cos 2π
2n+1

(n− h− 1
2
)(j − 1

2
) cos 2π

2n+1
(j − 1

2
)(i− 1

2
).

Then, the second and third terms are stochastically negligible because of the eval-
uation of their variances. We use the relation that for j = 1, · · · ,m and s, s

′
=

−k, · · · , k(k is fixed)

cos
2π

2n+ 1
(j − 1

2
)(i+ s

′ − 1

2
) = cos

2π

2n+ 1
(j − 1

2
)(i+ s− 1

2
) +O(

1

n
)

and the variance of the first term becomes approximately as m/n → 0,

Var[X1,n−h] = (
k∑

s=−k

γs)
2σ(x)2[

n

2
+

1

4
]

m∑
j=1

[cos
2π

2n+ 1
(n− h− 1

2
)(j − 1

2
)]2

∼ (
k∑

s=−k

γs)
2σ(x)2[

π2(h+ 1)2

6
]
m3

n
.
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Because the spectral density at zero is given by f∆x(0) = (
∑∞

s=−∞ γs)
2σ(x)2, we have

the result by taking k → ∞.
(Q.E.D)

Derivation of (6.8) : Let y(f)n be the estimate of yn by using the forward filter
method. It can be given as

y(f)n = e
′

n[CnPnQnPnC
−1
n (y − 1ny0) + 1nyn] ,

Then

y(f)n − yn = −1
′

n(In −PnQnPn)


y1 − y0
y2 − y1

...
yn − yn−1



= −1
′

nPnQ̄nPn


y1 − y0
y2 − y1

...
yn − yn−1


where Q̄n = In −Qn.
The forward-backward estimate of xt at t = n− h is given by

y
(s)
n−h = e

′

n−hC
′

nP
′∗
nQnP

∗
nC

′−1
n (Y∗

n − 1ny
(f)
n )

= e
′

n−hC
′

nP
′∗
nQnP

∗
nC

′−1
n (Y∗

n − 1nyn) + e
′

n−hC
′

nP
′∗
nQnP

∗
nC

′−1
n 1n(yn − y(f)n ) .

We set X∗
n−h = X∗

1,n−h +X2,n−h for

X∗
1,n−h = e

′

n−hP
′∗
nQnP

∗
n(−1)v(x) − e

′

n−hP
′∗
nQnP

∗
nen1

′

nPnQ̄nPnv
(x)

and
X∗

2,n−h = e
′

n−hP
′∗
nQnP

∗
n(−1)∆v − e

′

n−hP
′∗
nQnP

∗
nen1

′

nPnQ̄nPn∆v ,

where v(x) = (v
(x)
t ) and v = (vt).

BecauseQn ane Q̄n are idempotent matrices, we can use the relation that for d
′
n−h =

e
′
n−hP

′∗
nQnP

∗
n + e

′
n−hP

′∗
nQnP

∗
nen1

′
nPnQ̄nPn,

d
′

n−hdn−h = e
′

n−hP
′∗
nQnP

∗
nen−h + 1

′

nPnQ̄nPn1n[e
′

n−hP
′∗
nQnP

∗
nen]

2 .

Then by calculating the term of e
′
n−hP

′∗
nQnP

∗
nen as

n∑
k=1

sin
2π

2n+ 1
(k − 1

2
)(n− h) sin

2π

2n+ 1
(k − 1

2
)n

= (−1

4
)

n∑
k=1

[ei
2π

2n+1
(k− 1

2
)(n−h) − e−i 2π

2n+1
(k− 1

2
)(n−h)][ei

2π
2n+1

(k− 1
2
)n − e−i 2π

2n+1
(k− 1

2
)n]
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= (−1

4
)

n∑
k=1

[
ei

2π
2n+1

(k− 1
2
)[2n+1−(h+1)] + e−i 2π

2n+1
(k− 1

2
)[2n+1−(h+1)]

−ei
2π

2n+1
(k− 1

2
)h − e−i 2π

2n+1
(k− 1

2
)h
]

= (−1

4
)

ei 2π
2n+1

1
2
[2n+1−(h+1)]1− ei

2π
2n+1

1
2
[2n+1−(h+1)]m

1− ei
2π

2n+1
1
2
[2n+1−(h+1)]

+e−i 2π
2n+1

1
2
[2n+1−(h+1)]1− e−i 2π

2n+1
1
2
[2n+1−(h+1)]m

1− e−i 2π
2n+1

1
2
[2n+1−(h+1)]

−ei
2π

2n+1
1
2
h1− ei

2π
2n+1

hm

1− ei
2π

2n+1
h

− e−i 2π
2n+1

1
2
h1− e−i 2π

2n+1
hm

1− e−i 2π
2n+1

h

 ,

which is asymptotically equivalent to

(−1

4
)[−

sin 2π
2n+1

2hm

sin 2π
2n+1

h
−

sin 2π
2n+1

hm

sin 2π
2n+1

h
2

] .

When m.n → ∞ and m/n → 0, it is asymptotically equivalent to m. Also for the
term of 1

′
nPnQ̄nPn1n, we find that

n∑
j,,j′=1

n∑
k=m+1

cos
2π

2n+ 1
(j−1

2
)(k−1

2
) cos

2π

2n+ 1
(j

′−1

2
)(k−1

2
) ∼

n∑
k=m+1

[
1

2

cos π
2
2k−1
2n+1

sin π
2
2k−1
2n+1

]2

because
n∑

j=1

cos
2π

2n+ 1
(j − 1

2
)(k − 1

2
)

=
1

2

n∑
j=1

[ei
2π

2n+1
(j− 1

2
)(k− 1

2
) + e−i 2π

2n+1
(j− 1

2
)(k− 1

2
)]

=
1

2

ei 2π
2n+1

1
2
(k− 1

2
)1− ei

2π
2n+1

n(k− 1
2
)

1− ei
2π

2n+1
(k− 1

2
)
+ e−i 2π

2n+1
1
2
(k− 1

2
)1− e−i 2π

2n+1
n(k− 1

2
)

1− e−i 2π
2n+1

(k− 1
2
)


=

1

2

sin 2π
2n+1

n(k − 1
2
)

sin 2π
2n+1

1
2
(k − 1

2
)

= (−1)k+11

2

cos π
2
2k−1
2n+1

sin π
2
2k−1
2n+1

.

Then, by using the fact that when n,m1 → ∞ and m1/n → c (0 ≤ c <≤ 1)

1

n

n∑
k=m1+1

[
cos π

2
2k−1
2n+1

sin π
2
2k−1
2n+1

]2
∼
∫ 1

c

[
cos π

2
z

sin π
2
z

]2
dz ,

we have the result.
(Q.E.D)
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