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Abstract

We consider the statistical estimation of the coefficients of a linear structural equa-
tion in a simultaneous equation system when we use two-sample data and there
are many instrumental variables. We derive some asymptotic properties of the
Two-Sample Least Variance Ratio (2SLVR) estimator, which is an extension of the
limited information maximum likelihood (LIML) estimator in one-sample, when we
have two-sample data with many insrumental variables. It has been known that
there is a non-negligible bias in the one-sample two stage least squares (TSLS) esti-
mator and the generalized moment method (GMM), which are widely used in prac-
tice. They often lose even consistency when we have many instruments. We have
found that the variance-covariance matrix of the limiting distribution of the 2SLVR
estimator and its modifications often attain the asymptotic lower bound when the
number of instruments is large and the disturbance terms are not necessarily nor-
mally distributed. The results would be useful for applications in econometrics and
biometrics including Mendelian Randomization (RM) using DNA data analysis.
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1. Introduction

There has been a growing interest and research on the instrumental variables (IV)
estimation method of a single structural equation when the number of instruments
(the number of instrumental variables excluded from the structural equation), say
K2 (or K2n), is large relative to the sample size n. The relevance of such models
is due to collection of large data sets and the development of computational equip-
ment capable of analysis of such data sets in econometrics and biometrics including
Mendelian Randomization (MR). Traditionally, many econometricians have been in-
terested in the instrumental variables methods, but recently there have been many
applications reported in the DNA data analysis of MR particularly. (Burgess and
Thomspon (2020), Zhao, Q., J. Wang, G. Hemani, J. Bowden, and D. Small (2020),
Ye, T., J. Shao and H. Kang (2021), for instance.)

In recent statistical applications, we sometimes cannot obtain the full data sets
of endogenous variables and instrumental variables as one-sample, but we can obtain
two-sample data set to investigate statistical causal relationships among endogenous
variables. Then several estimation methods have been proposed. Among them, the
two-sample two-stage least squares (2STSLS) method has been sometimes used since
Inoue and Solon (2010) in econometrics. However, it has been known that in one-
sample standard case the bias of the TSLS estimation is not negligible when there
are many instruments (see Anderson, Kunitomo and Sawa (1982), and Anderson,
Kunitomo and Matsushita (AKM, 2010), for instance). In the one sample case, AKM
(2010) have investigated the asymptotic properties of some instrumental variables
methods and shown the asymptotic efficiency of the LIML estimation when there
are many instruments.

The main purpose of the present paper is to show that one method, the two-
sample least variance ratio (2SLVR) estimator, has an optimum property when both
the sample size n and K2, which is the number of excluded instrumental variables.
The 2SLVR estimator is a modified version of the one-sample LIML estimator to the
two-sample situation. As a background of the statistical problem, we state and de-
rive some asymptotic distributions of the 2LVR estimator and the 2TSLS estimator
as K2n → ∞ and n → ∞ while K2n < n. Some of these results are improvements on
AKM (2010) and earier studies in econometrics and they are presented in a unified
notation.

In addition to the 2SLVR and 2STSLS estimators there are other instrumental
variables (IV) methods. See Kunitomo (1980), Morimune (1983), Anderson, Kunit-
omo, and Morimune (1986) on the earlier studies of the finite sample properties of
alternative (one-sample) estimation methods, for instance. Several semiparametric
estimation methods have been developed including the generalized method of mo-
ments (GMM) estimation and the empirical likelihood (EL) method. (See Hayashi
(2000) or Angrist and Pishke (2009), for instance.) However, it has been recently
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recognized that the classical methods have some advantages in some situations with
many instruments.

In this paper, we shall give the results on the asymptotic properties of the 2SLVR
estimator when the number of instruments is large and we develop the large-K2

asymptotic theory or the many instruments asymptotics. The 2STSLS estimator is
badly biased and it loses even consistency in some situation. Our results on the
asymptotic properties and optimality of the 2SLVR estimator and its variants give
a new interpretation on the numerical information of the finite sample properties,
A guidance on the use of alternative estimation methods is provided for the use of
structural equation model with many instruments in micro-econometric models and
RM in biometrics. There is a number of related studies both in econometrics and
biometrics. Some examples in econometrics were Donald and Newey (2001), Stock
and Yogo (2005), Chao and Swanson (2005, 2006), and Hansen et al. (2008).

In Section 2, we state the formulation of a linear structural model and the two-
sample alternative estimation methods of unknown structural parameters with pos-
sibly many instruments. In Section 3, we develop the large-K2 asymptotics (or many
instruments asymptotics) and give some results on the asymptotic normality of the
2SLVR estimator when n and K2 are large. Then we shall present some results on
the asymptotic optimality of the 2SLVR estimation in the sense that it attains the
lower bound of the asymptotic variance in a class of consistent estimators with many
instruments under reasonable assumptions. Also we discuss some issues such as a fi-
nite sample correction, the case when there are included instruments, the case when
we have different sample sizes, and the problem of weak instruments in Section 4.
In Section 5, we give some numerical results and show that the asymptotic results in
Section 3 agree with the finite sample properties of estimators. Concluding remarks
will be given in Section 6. The derivations of theorems are given in the Appendix.

2. Alternative Two-Sample IV Estimation Methods in Struc-
tural Equation Models with Many Instruments

We investigate the estimation problem of a structural equation in the classical
linear simultaneous equation framework when we have two-sample data. Let a single
linear structural equation be

(2.1) y1i = β
′

2y2i + γ
′

1z1i + ui (i = 1, · · · , n),

where y1i and y2i are a scalar and a vector of G2 endogenous variables, z1i is a
vector of K1 (included) exogenous variables in (2.1), γ1 and β2 are K1 × 1 and
G2 × 1 vectors of unknown parameters, and u1, · · · , un are independent disturbance
terms with E[ui|z1i, z2n,i] = 0 and E[u2

i |z1i, z2n,i] = σ2
∗ (i = 1, · · · , n), where z2n,i

(K2n× 1 vector) is excluded from (2.1), but it is in the set of instrumental variables
(IV) to explain the endogenous variables y1i and y2i in the simultaneous equation
system.
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The structural equation of (2.1) is not a regression because the endogenous variables
y1i and y2i are correlated with the noise term and they are (probably linear) jointly
explained by a set of included exogenous variables z1i, and the instrumental variables
z2n,i, which are excluded from (2.1). An interesting feature of the present problem is
the situation when there are many instrumental variables called many instruments
in econometrics available as data and thus we use the notation z2n,i (i = 1, · · · , n)
depending on n.

The main interest of this paper is the estimation of structural coefficient vector
(say, β2), but the data set of endogenous variables y

′
i = (y1i,y

′
2i)

′
for individual i

is not available and we have y1i (i = 1, · · · , n1) and y2j (j = 1, · · · , n2) in different
samples. In addition to endogenous variables, however, we have a large number of
data sets of the instrumental variables in two-sample data and these instrumental
variables are two samples on the same set of explanatory variables. This makes the
present problem different from the traditional structural equation estimation and
the instrumental variables (IV) methods.
In particular. we consider the situation that in the first sample we have the observa-
tions of y

(1)
1i , z

(1)
1i (K1×1 vector) and a K2n×1 vector z

(1)
2n,i (i = 1, · · · , n1), and in the

second sample we have the observations of a G2 × 1 vector y
(2)
2j , z

(2)
1j (K1 × 1 vector)

and a K2n×1 vector z
(2)
2n,j (j = 1, · · · , n2). We investigate the estimation problem of

the vector β2, when the reduced form of the endogenous variables y
′
i = (y

(1)
1i ,y

(2)′

2i )
′

in the two-sample data is given by

(2.2) y
(1)
1 = (Z

(1)
1 ,Z

(1)
2n )Π1n + v1 ,Y

(2)
2 = (Z

(2)
1 ,Z

(2)
2n )Π2n +V2 ,

where y
(1)
1 and Y

(2)
2 are n1 × 1 vector and n2 ×G2 matrix of endogenous variables,

(Z
(k)
1 ,Z

(k)
2n ) (k = 1, 2) are the nk × (K1 + K2n) matrices of vectors of instrumental

variables, v1 (= (v1i)) and V2 (= (v
′
2i)) are the n1 × 1 vector and n2 ×G2 matrix of

disturbances,

Π1n =

(
π11

π
(n)
21

)
,Π2n =

(
Π12

Π
(n)
22

)
is the (K1+K2n)×(1+G2) matrix of coefficients, and we assume that the coefficients

(Π1n,Π2n) are the same as for (y1i,y
′
2i)

′
in (2.1) and (y

(k)
1i ,y

(k)
2i ) (k = 1, 2) in (2.2).

The disturbance term v1i has E[v1i] = 0 and E[v21i] = ω11 (i = 1, · · · , n1), and the dis-
turbance vector v2j has E[v2j] = 0 and E[v2jv

′
2j] = Ω22 (j = 1, · · · , n2). Because the

data sources of two-sample are ususally different, we assume that v1i and v2j are mu-

tually independent. The vector of Kn (= K1+K2n) instrumental variables z
(k)
1i , z

(k)
2n,i

(k = 1, 2) satisfies the orthogonality condition E[v1i|z(1)
1i , z

(1)
2n,i] = 0 (i = 1, · · · , n1)

and E[v2j|z(2)
1j , z

(2)
2n,j] = 0 (j = 1, · · · , n2).

In Sections 2 and 3, we assume that the data size of two sample is the same, that
is, n1 = n2 = n and n > K1 +K2n (n > 2). We shall discuss the case when n1 ̸= n2
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in Section 4.
To remove the effects of included instrumental variables Z

(k)
1 (k = 1, 2), we de-

fine Z
(k)∗
2n = Z

(k)
2n − P

Z
(k)
1
Z

(k)
2n = P̄

Z
(k)
1
Z

(k)
2n and the projection matrices P

Z
(k)
1

=

Z
(k)
1 (Z

(k)′

1 Z
(k)
1 )−1Z

(k)′

1 , P̄
Z

(k)
1

= In − P
Z

(k)
1

(k = 1, 2). The estimation of the reduced

form coefficients in (2.2) can be done by using
(2.3)

[π̂21, Π̂22] = [(Z
(1)′

2n P̄
Z

(1)
1
Z

(1)
2n )

−1Z
(1)′

2n P̄
Z

(1)
1
y
(1)
1 , (Z

(2)′

2n P̄
Z

(2)
1
Z

(2)
2n )

−1Z
(2)′

2n P̄
Z

(2)
1
Y

(2)
2 ] .

We impose the condition that that there exists a G2 × 1 (unknown) structural
parameter vector β2 such as

(2.4)

(
π11 Π12

π
(n)
21 Π

(n)
22

)(
1

−β2

)
=

(
γ1

0

)
,

where γ1 (K1 × 1) is defined by the upper-part of (2.4).
It may be natural to use the lower part of the relation in (2.4) and (2.3) to estimate
the structural coefficients β

′
= (1,−β

′

2). (We have taken 1 as the first component
of β as normalization.)

A Remark on Two-Sample Model : For the simplicity, we take the case when
K1 = 0 and n1 = n2 = n. In the first sample, we have the regression relation with
the estimated coefficient vector Π̂1n of instruments while in the second sample we
have the regression relation with the estimated coefficient matrix Π̂2n of instruments.

The expected values of π̂
(n)
21 and Π̂

(n)

22 are π
(n)
21 and Π

(n)
22 , respectively. If there exists

a linear statistical relation between unknown regression coefficients π
(n)
21 and Π

(n)
22 ,

we have β2 (G2 × 1 unknown non-zero vector) such that π
(n)
21 = Π

(n)
22 β2. Since π̂

(n)
21

(K2n × 1) and Π̂
(n)

22 (K2n × G2) are estimated from two-sample data and random,
we represent as

(2.5) π̂
(n)
21 = π

(n)
21 + x

(n)
1 , Π̂

(n)

22 = Π
(n)
22 +X

(n)
2 ,

where (x
(n)
1 ,X

(n)
2 ) is a K2n × (1 + G2) random matrix with zero means and het-

eroskedasticity. We need to consider the sampling variation both in x
(n)
1 and X

(n)
2

to estimate the true structural relationship of π
(n)
21 = Π

(n)
22 β2.

In one-sample case, we take y1 = y
(1)
1 , Y2 = Y

(2)
2 , and (Z

(k)
1 ,Z

(k)
2n ) = (Z1,Z2n) (k =

1, 2), and then we recover (2.1) with ui = v1i − β
′

2v2i by multiplying (1,−β
′

2)
′
from

the right to (y1,Y2). In two-sample case, however, we do not have such structural
representation for the i−th individual (i = 1, · · · , n) observation. Nonetheless, the
situation can be interpreted as a classical (linear) errors-in-variables model and then,

we may expect that the estimated regression coefficients of π̂
(n)
21 on Π̂

(n

22 (in the second
stage) are badly biased when K2n is large, that is, when the number of instruments
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is large. (See Anderson (1984) on the classical errors-in-variables models.)

For the vector of included instrumental variables in the structural equation γ1 is
based on the upper part of the relation in (2.4) as

(2.6) γ̂1 = π̂11 − Π̂12β̂2 ,

where β̂2 is the estimator of β2,
(2.7)

[π̂11, Π̂12] = [(Z
(1)′

1 P̄
Z

(1)
2n
Z

(1)
1 )−1Z

(1)′

1 P̄
Z

(1)
2n
y
(1)
1 , (Z

(2)′

1 P̄
Z

(2)
2n
Z

(2)
1 )−1Z

(2)′

1 P̄
Z

(2)
2n
Y

(2)
2 ] ,

and the projection matrices P
Z

(k)
2n

= Z
(k)
2n (Z

(k)′

2n Z
(k)
2n )

−1Z
(k)′

2n , P̄
Z

(k)
2n

= In − P
Z

(k)
2n

(k =

1, 2).

Let A
(k)
22.1 = Z

(k)′

2n P̄
Z

(k)
1
Z

(k)
2n (k = 1, 2) be sequences of K2n × K2n matrices, which

remove the effects of included instrumental variables. We define the (1+G2)×(1+G2)
matrix by

(2.8) G =

[
g11 g12

g21 G22

]
where g11 = π̂

(n)′

21 A
(1)
22.1π̂

(n)
21 , G22 = Π̂

(n)′

22 A
(2)
22.1Π̂

(n)

22 , g12 = π̂
(n)′

21 A
(1)
22.1A

−1
22.1A

(2)
22.1Π̂

(n)

22 ,

g12 = g
′
12, and A22.1 = w1A

(1)
22.1 + w2A

(2)
22.1 is a sequence of K2n × K2n positive

definite matrices with w1 +w2 = 1, w1 ≥ 0, w2 ≥ 2 in general. But we take the case
of w1 = 1 in the following analysis because of the resulting simplicity. (We shall

impose a condition that A
(k)
22.1 (k = 1, 2) are essentially the same in Section 3.)

For the estimation of the variance-covariance matrix Ω = (
ω11 0

′

0 Ω22
) ((1 +G2)×

(1 +G2) matrix), we use the (1 +G2)× (1 +G2) matrix by

(2.9) H =

[
h11 0

′

0 H22

]
,

where h11 = y
(1)′

1 [In−P
(Z

(1)
1 ,Z

(1)
2n )

]y
(1)
1 , (G2×G2 matrix)H22 = Y

(2)′

2 [In−P
(Z

(2)
1 ,Z

(2)
2n )

]Y
(2)
2 ,

and In −P
(Z

(k)
1 ,Z

(k)
2n )

(k = 1, 2) are the n× n projection matrices.

We investigate the class of estimators depending on G and H ((1+G2)×(1+G2)
stochastic matrices) in two sample situation. In one sample case when K2n does not
depend on n, they constitute the sufficient statistics known in statistical multivari-
ate analysis (see Anderson (2003)). They differ from the corresponding ones in the

one-sample case because (Z
(1)
1 ,Z

(1)
2n ,y

(1)
1 ) is different from (Z

(2)
1 ,Z

(2)
2n ,Y

(2)
2 ). Because
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we have two samples and they are different samples from the same population, we
assume that there is no correlation among v1i and v2i (i = 1, · · · , n).
We define the 2SLVR (Two-Sample Least Variance Ratio) estimator β̂LV R (= (1,−β̂

′

2.LV R)
′
)

of β (= (1,−β
′

2)
′
) as the solution of

(2.10) (
1

n
G− λn

1

qn
H)β̂LV R = 0 ,

where qn = n−Kn (qn > 2) and λn is the smallest root of

(2.11) | 1
n
G− l

1

qn
H| = 0 .

The solution minimizes the variance ratio

(2.12) VRn =

(1,−β
′

2)G(
1

−β2
)

(1,−β
′

2)H(
1

−β2
)

with respect to the structural parameter vector β. The 2STSLS estimator β̂TS (=

(1,−β̂
′

2.TS)
′
) of β = (1,−β

′

2)
′
is given by

(2.13) [g21,G22]

(
1

−β̂2.TS

)
= 0 ,

where Y2 = (y
′
2i) is an n × G2 matrix. The 2STSLS estimator minimizes the

numerator of the variance ratio.
For the one sample data, the 2SLVR estimator corresponds to the LIML (lim-

ited information maximum likelihood) estimator while the 2STSLS estimator cor-
responds to the TSLS (two-stage least squares) estimator. Their properties in the
general case were originally developed by Anderson and Rubin (1949, 1950). See
also Anderson (2005).

3 Asymptotic Optimality of 2SLVR Estimator

3.1 Asymptotic Normality of the 2SLVR Estimator

We state the limiting distribution of the 2SLVR estimator under a set of alternative
assumptions when K2n and Π2n depend on n and n → ∞. We first consider the
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case when

(I)
K2n

n
−→ c (0 ≤ c < 1),

(II)
1

n
Π

(n)′

22 A
(k)
22.1Π

(n)
22

p−→ Φ22.1 (k = 1, 2),

(III) η = plim
n→∞

1

n

n∑
i=1

[
p
(n)
ii (P

Z
∗(k)
2n

)− c
]2

(k = 1, 2) ,

and ηc =
[

1
1−c

]2
η (η is a non-negative constant),

where p
(n)
ii (P

(k)
Z∗
2n
) is the (i, i)−diagonal element of P

(k)
Z∗
2n

(= Z
∗(k)
2n (A

(k)
22.1)

−1Z
∗(k)′
2n ) and

Φ22.1 is a G2 ×G2 nonsingular matrix.
Condition (I) implies that the number of coefficient parameters is proportional to

the number of observations. Because we want to estimate the covariance matrix of
(v1i,v

′
2i)

′
(i = 1, · · · , n) consistently, we need 0 ≤ c < 1. Then, Condition (I) implies

qn −→ ∞ as n −→ ∞. Condition (II) controls the non-centrality (or concentration)
parameter to be proportional to the sample size. Since K2n grows, it is often called
the case of many instruments. These conditions define the rates of growth of the
number of incidental parameters in the statistical model. Condition (I) can be
weakened to Conditions with c = 0, where K2n increases with n but at a smaller
rate (see Theorem 2). Condition (II) implies that two sets of instruments share the
same consistent structure on average, which may be reasonable if the effects of the
instruments are similar in two samples. Further, we may impose conditions that for
any g, h = 1, 2

(II∗)
1

n
Π

(n)′

22 A
(g)
22.1A

(h)−1
22.1 A

(g)
22.1Π

(n)
22

p−→ Φ22.1 ,

and

(II∗∗)
1

n
Π

(n)′

22 A
(g)
22.1Π

(n)
22 = Φ22.1 + op(

1√
n
) .

These are useful for the simplification of the resulting formulae of the asymptotic
variance-covariances of the 2SLVLR estimator. As an example, we take A

(k)
22.1/n ∼

caIK2n for some ca (> 0) and k = 1, 2. Then, a sequence of G2 ×G2 (or G2 ×K2n ×
K2n × G2) matrices Π

(n)′

22 Π
(n)
22 < ∞, which means that the additional coefficients

in the reduced form (2.2) become negligible as n and K2n increase. However, these
conditions can be weakened with some cost of notational complications without
changing the results essentially. Condition (III) is needed for analyzing the effects
of non-normal disturbances on estimation.

We summarize the basic results on the asymptotic distributions of the 2SLVR
and 2STSLS estimators for β2 when n and K2n are large. To state our results in a
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compact way, we transform vi = (v1i,v
′
2i)

′
(= (vji), i = 1, · · · , n; j = 1, · · · , G2 + 1)

to

(3.1) w2i = A vi , A = (0, IG2)[IG2+1 −
Ωββ

′

β
′
Ωβ

] ,

and σ2 = E[(= β
′
vi)

2].
Then, the vector w2i is uncorrelated with ui = β‘vi (i = 1, · · · , n), which is the
disturbance term of the structural equation.
To measure the effects of the non-normality of disturbance terms, we use the fourth
order moments and we define a (1 +G2)× (1 +G2) matrix

(3.2) Γ(v) =

[
Γ(v1) 0

′

0 Γ(v2)

]
,

where Γ(v1) = E[v41i] − 3ω2
11 and Γ(v2) = E[v2iv

′
2i(β

′

2v2i)
2] − [2Ω22β2β

′

2Ω22 +
β

′

2Ω22β2Ω22] . (When G2 = 1, Γ(v2) = E[(v42i − 3Ω2
22)β

2
2 ].)

When vi are normally distributed, Γ(v1) = 0, Γ(v2) = O and then Γ(v2) = O. Be-
cause we assume that the noise terms in two-sample data v1i and v2i are mutually
independent sequences, Γ(v) is a block-diagonal matrix.

Theorem 1 : Let z
∗(k)′
2n,i (i = 1, 2, · · · , n; k = 1, 2) be the i−th row vector (a

K2n × 1) of Z
∗(k)
2n (n × K2n matrix of normalized instrumental variables). Let

vi = (v1i,v
′
2i)

′
, i = 1, 2, · · · , n, be a set of (1 + G2) × 1 independent random

vectors, which are orthogonal to z
∗(k)
2n,1, · · · , z

∗(k)
2n,n such that E(vi|z∗(k)2n,i) = 0 and

E(viv
′
i) = Ω (a.s.).

Suppose that Conditions (I), (II)∗, (II)∗∗, (III) hold. In addition, we assume

(IV)
1

n
max
1≤i≤n

∥Π(n)′

22 z
∗(k)
2n,i∥2

p−→ 0 (k = 1, 2) .

Let β̂2.LV R be the 2SLVR estimator of β2.
(i) For c = 0, then

(3.3)
√
n(β̂2.LV R − β2)

d−→ N(0,Ψ∗) ,

where Ψ∗ = σ2Φ−1
22.1 and σ2 = β

′
Ωβ .

(ii) For 0 < c < 1, we further assume that E[vjivkivli] = 0 for any j, k, l and
i = 1, · · · , n 1, where vji is the j-th element of vi, and assume that E[∥vi∥4+ϵ] < ∞
for some ϵ > 0 (and E[∥Π(n)′

22 z
∗(k)
2n,i∥2+δ] < ∞ for some δ > 0 when z

(n)
i are stochastic).

Then

(3.4)
√
n(β̂2.LV R − β2)

d−→ N(0,Ψ∗∗) ,

1We make this assumption for the simplicity. It is possible to relax this condition with some
complication of notation. See AKM (2010) for the one-sample case.
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where

Ψ∗∗ = σ2Φ−1
22.1 +Φ−1

22.1

{
c
[
Ω22σ

2 −Ω22β2β
′

2Ω22

]
+ cc∗

[
(β

′

2Ω22β)Ω22 +Ω22β2β
′

2Ω22[4(
ω11

σ2
)2 − 1]

]
+ ηcAΓ(v)A

′
}
Φ−1

22.1

and c∗ = c/(1− c).

If G2 = 1 in Theorem 1, [Ωσ2 − Ωββ
′
Ω]22 = ω11ω22 = |Ω| because E[v1iv2i] =

ω12 = 0.
This theorem is an extension of Theorem 1 of AKM (2010) for the one sample case
to the two-sample case. Since we have some different model structure in two-sample
case, the resulting formula is slightly different from Theorem 1 of AKM (2010).
The variance-covariance matrix of the limiting distribution of the 2SLVR estimator
depends on the third and fourth order moments of the disturbance terms in the
general case. Instead of making an assumption on the distribution of disturbance
terms except the existence of their moments, alternatively we may assume

(III
′
) plim

n→∞

1

n

n∑
i=1

[
p
(n)
ii (P

Z
∗(k)
2n

)− c
]2

= 0 (k = 1, 2).

Then the asymptotic distribution does not depend on the fourth-order moments.
A simple example for Condition (III

′
) is the case when we have pii((PZ

∗(k)
2n

) =

z
∗(k)′
2n,i (Z

∗′
2nZ

∗
2n)

−1z
∗(k)
2n,i ∼ K2n/n. Condition (III

′
) is the same as η = 0 in Condition

(III) and the direct consequence of Condition (III
′
) implies the following result :

Corollary 1 : For 0 ≤ c < 1 assume Conditions (I), (II∗), (II∗∗) and (III
′
).

Furthermore, assume that E[∥vi∥2+ϵ] < ∞ for some ϵ > 0 (and E[∥Π(n)′

22 z
∗(k)
2n,i∥2+δ] <

∞ for some δ > 0 when z
(n)
i are stochastic). Then

(3.5)
√
n(β̂2.LV R − β2)

d−→ N(0,Ψ∗∗) ,

where

Ψ∗∗ = σ2Φ−1
22.1 +Φ−1

22.1

{
c
[
Ω22σ

2 −Ω22β2β
′

2Ω22

]
+ cc∗

[
(β

′

2Ω22β)Ω22 +Ω22β2β
′

2Ω22[4(
ω11

σ2
)2 − 1]

]}
Φ−1

22.1

and c∗ = c/(1− c).

The asymptotic properties of the 2SLVR estimator also hold when K2n increases
as n → ∞ and K2n/n → 0. In this case the limiting distribution of the 2SLVR
estimator can be still different from that of the 2TSLS estimator, depending on the
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relative magnitude of n and K2n.

Theorem 2 : Let z
∗(k)′
2n,i (i = 1, 2, · · · , n; k = 1, 2) be the i−th row vector (a

K2n × 1) of Z
∗(k)
2n (n ×K2n matrix of normalized instrumental variables). Let vi =

(v1i,v
′
2i)

′
, i = 1, 2, · · · , n, be a set of (1+G2)×1 independent random vectors, which

are orthogonal to z
∗(k)
2n,1, · · · , z

∗(k)
2n,n such that E(vi|z∗(k)2n,i) = 0 and E(viv

′
i|z

∗(k)
2n,i) =

Ω
(n)
i (a.s.) is a function of z

∗(k)
2n,i (k = 1, 2). The further assumptions on (vi, z

∗(k)
2n,i)

(vi = (vji)) are that E(v
4
ji|z

∗(k)
2n,i) are bounded, there exists a constant matrix Ω such

that
√
n∥Ω(n)

i − Ω∥ is bounded and σ2 = β
′
Ωβ > 0 . Assume Conditions (II∗),

(II∗∗), and

(I
′
)

K2n

nν
−→ cν (0 ≤ ν < 1, 0 < cν < ∞),

(IV)
1

n
max
1≤i≤n

∥Π(n)′

22 z
∗(k)
2n,i∥2

p−→ 0 (k = 1, 2),

where Φ22.1 is a nonsingular constant matrix.
Let β̂2.LV R and β̂2.TS be the 2SLVR estimator and the 2STSLS estimator of β2,
respectively.
(i) Then for the 2SLVR estimator when 0 ≤ ν < 1,

(3.6)
√
n(β̂2.LV R − β2)

d−→ N(0, σ2Φ−1
22.1) ,

where σ2 = β
′
Ωβ.

(ii) For the 2STSLS estimator when 1/2 < ν < 1,

(3.7) n1−ν(β̂2.TS − β2)
p−→ Φ−1

22.1 (−cν)Ω22)β2 ,

when ν = 1/2,

(3.8)
√
n(β̂2.TS − β2)

d−→ N
[
(−cν)Φ

−1
22.1Ω22β2, σ

2Φ−1
22.1

]
,

where Ω22 is the G2 ×G2 lower-left submatrix of Ω. When 0 ≤ ν < 1/2,

(3.9)
√
n(β̂2.TS − β2)

d−→ N(0, σ2Φ−1
22.1) .

It is possible to interpret the standard large sample theory as a special case
of Theorem 2. When K2n is a fixed number, it has been known that the LIML
and TSLS estimators in the one-sample are asymptotically normal and equivalent.
When K2n is large, they are substantially different and there were several studies
on their asymptotic as well as finite sample properties in one-sample case. Since the
TSLS estimator is a special case of the GMM estimator and both share the simi-
lar asymptotic properties when K2n is large. For the one-sample case of structural
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equation estimation, there have been earlier studies on the finite sample properties
such as as Anderson, Kunitomo and Sawa (1982). See Angrist and Pischke (2009)
as a textbook on applied econometrics. The asymptotic properties of one-sample IV
methods have been discussed in econometric literature including AKM (2011), Don-
ald and Newey (2001), Stock and Yogo (2005), Chao and Swanson (2005), Hansen
et al. (2008), among many others.

3.2 Asymptotic Optimality with Many Instruments

For the estimation of the vector of structural parameters β, it seems natural to
consider procedures based on the two (1 + G2) × (1 + G2) matrices G and H,
which are sufficient statistics in the classical one-sample standard situation. (See
Anderson (2003).) We shall consider a class of estimators which are functions of these
matrices for the two sample structural equation estimation. The typical examples
of this class are the Two-Sample OLS estimator, the 2STSLS estimator, and the
2SLVR estimator. Then we have a basic result on the asymptotic optimality of the
2LVR estimator and its (asymptotically equivalent) modifications, which attains the
lower bound of the asymptotic covariance under alternative assumptions in most
cases. The proof is essentially the same as the one-sample case given as the proof
of Theorem 4 in AKM (2010), but we give its skech in the Appendix for the sake of
completeness.

Theorem 3 : Define a class of consistent estimators for β2 in the form of

(3.10) β̂2 = ϕ(
1

n
G,

1

qn
H) ,

where ϕ is continuously differentiable and its derivatives are bounded at the proba-
bility limits of (1/n)G and (1/qn)H as K2n → ∞ and n → ∞ and 0 ≤ c < 1. Then
under the assumptions of Theorem 1, Corollary 1, or Theorem 2.

(3.11) AE
[
n(β̂2 − β2)(β̂2 − β2)

′
]
≥ Ψ∗ (or Ψ∗∗) ,

and Ψ∗ (or Ψ∗∗ ) is given in Theorem 1, Corollary 1, and Theorem 2, where the
right-hand side of (3.11) is the covariance matrix of the limiting distribution of the
normalized estimator

√
n(β̂2 − β2) for the class of (3.10).

The inequality (3.11) holds in the sense of non-negative definiteness of matrices.
As a consequence, we have AE [n∥β̂2 − β2∥2] ≥ Tr(Ψ∗∗). It is a fundamental result
on the asymptotic optimality of the Two-Sample LVR estimator when there are
many instruments K2n along with the sample size. Although in some applications
such as econometrics as well as Menderian Randomization (MR), there have been
many studies on the asymptotic properties of alternative IV estimation methods,

12



we could not find any asymptotic optimality results as far as we know even in the
special case when G2 = 1.

We have an important remark on Theorem 3 that the asymptotic optimality
of the 2SLVR estimation holds as far as we have the asymptotic normality of the
2SLVR estimation. Although the asymptotic variance-covariances become more
complicated, Conditions (II∗) (II∗∗), and assumption on the third order moments of
vi could be relaxed considerably. This problem is currently under investigation.

4 Discussion and Generalizations

4.1 A Finite Sample Correction

Although we have shown that the 2SLVR estimator has an asymptotic optimality
when K2n and n are large in Theorem 3, we need to have some care to evaluate its
finite sample property. We may propose a finite sample correction of the 2SLVR

estimator β̂
′

CLV R = (1,−β̂2.CLV R) of β, which is the solution of

(4.1) [0, IG2 ][
1

n
G− λ(f)

n

1

qn
H]β̂CLV R = 0 ,

where λ
(f)
n = λn − f/n for a positive number f and λn is the smallest root of the

determinantal equation | 1
n
G− l 1

qn
H| = 0. The choice of f can be either 1, 2 or 4 in

practice.

This modified 2SLVR estimator is asymptotically equivalent to the 2SLVR esti-
mator in the standard asymptotic framework, however, we may expect that it may
improve the finite sample property in some situation. It has been known that in
the one sample case, Fuller (1977) proposed to take f = 1 to improve the LIML
estimation. Later, Anderson, Kunitomo and Morimune (1986) have investigated the
effect of choosing f on the finite sample distribution of estimation methods when the
disturbance terms are normally distributed and K2n is fixed.

4.2 On Estimation of γ1

By using the upper-part of the relation (2.4) and the regression coefficients (2.7) in
the reduced form equations, the 2SLVR estimator of β2 is given as (2.10).
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Then, by using (2.2), we find that

γ̂1 = (Z
(1)′

1 P̄
Z

(1)
2n
Z

(1)
2n )

−1Z
(1)′

1 P̄
Z

(1)
2n
y
(1)
1 − (Z

(2)′

1 P̄
Z

(2)
2n
Z

(2)
1 )−1Z

(2)′

1 P̄
Z

(2)
2n
Y

(2)
2 ]β̂2

= [Π11 + (Z
(1)′

1 P̄
Z

(1)
2n
Z

(1)
2n )

−1Z
(1)′

1 P̄
Z

(1)
2n
v1]

−[Π12 + (Z
(2)′

1 P̄
Z

(2)
2n
Z

(2)
1 )−1Z

(2)′

1 P̄
Z

(2)
2n
V2][β2 + (β̂2 − β2)]

= γ1 + [(Z
(1)′

1 P̄
Z

(1)
2n
Z

(1)
2n )

−1Z
(1)′

1 P̄
Z

(1)
2n
v1 − (Z

(2)′

1 P̄
Z

(2)
2n
Z

(1)
1 )−1Z

(2)′

1 P̄
Z

(2)
2n
V2β2]

−[Π12 + (Z
(2)′

1 P̄
Z

(2)
2n
Z

(2)
1 )−1Z

(2)′

1 P̄
Z

(2)
2n
V2](β̂2 − β2) .

and

√
n[γ̂1 − γ1] =

1

n
Z

(1)′

1 P̄
Z

(1)
2n
Z

(1)
2n )

−1 1√
n
Z

(1)′

1 P̄
Z

(1)
2n
v1

−(
1

n
Z

(2)′

1 P̄
Z

(2)
2n
Z

(2)
1 )−1 1√

n
Z

(2)′

1 P̄
Z

(2)
2n
V2β2

−[Π12 + (
1

n
(Z

(2)′

1 P̄
Z

(2)
2n
Z

(2)
1 )−1 1

n
Z

(2)′

1 P̄
Z

(2)
2n
V2][

√
n(β̂2 − β2) .

Then, from the proof of Theorem 1 in Section 3, we obtain the asymptotic normality
under a set of conditions when both n and K2n are large.
For the asymptotic covariance-variance, we assume Condition II in Section 3. Then,
by using the derivations outlined in the Appendix, the asymptotic variance-covariance
matrix is given by

(4.2) V[
√
n(γ̂1 − γ1)] = β

′
Ωβ[M−1

11.2 +Π12Φ
−1
22.1(

1

σ2
Ψ∗∗)Φ−1

22.1Π
′

12 + F+ F
′
] ,

where F = M−1
11.2M12.2σ

2Φ−1
22.1Π

′

12, provided that there exist M11.2 (a non-singular
K1 ×K1 matrix) and a K1 ×G2 matrix M12.2 such that

(4.3)
1

n
Z

(k)′

1 P̄
Z

(k)
2n
Z

(k)
1

p→ M11.2 ,
1

n
Z

(k)′

1 P̄
Z

(k)
2n
P̄

Z
(k)
1
Z

(k)
2nΠ

(n)
22

p→ M11.2 (k = 1, 2).

Furthermore, if we have the orthogonal condition that Z
(k)′

1 Z
(k)
2n = O and F = O,

(4.2) is simplified as

(4.4) V[
√
n(γ̂1 − γ1)] = β

′
Ωβ[M−1

11 +Π12Φ22.1Π
′

12] ,

where 1
n
Z

(k)′

1 Z
(k)
1

p→ M11 and M11 is assumed to be positive definite.

4.3 Weak Instruments

When there are many instruments, some economists were interested in the case when
the explanatory power of additional instruments is not zero, but is small. This
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situation has been called as the problem of weak instruments in the econometric
literature. One way to formulate this problem may be to cinsider the conditions
that there exist ν (0 < ν ≤ 1) and δ (0 < δ ≤ 1) such that

(I
′
)

K2n

nν
−→ cν (0 ≤ cν < 1) , (II

′
)

1

nδ
Π

(n)′

22 A
(k)
22.1Π

(n)
22

p−→ Φ22.1 ,

where Φ22.1 is positive definite.
Then, we need to take the normalization as nδ/2[β̂2 − β2] instead of

√
n[β̂2 − β2],

and it is possible to obtain the results by modifying the derivations given in the
Appendix. The results are similar to Theorem 2 and Theorem 3 in Section 3 with
slightly complicated notations and we omitted the details.

4.4 On Estimation When n1 ̸= n2

In applications the sample size from two samples are often different and we need to
deal with this problem. There can be two ways to handle the problem.

First, we have obtained the asymptotic results when n1 = n2, and there is a
natural way to take two-sample data with the same sample size by deleting extra
observations. If we have the situation that n1 > n2, then we take two samples with
the sample size n = min{n1, n2}. Then, one obvious problem is a loss of information
in two-sample data.

Because we have different samples, but there is a relationship between two en-
dogenous variables in the structural equation. There should be a way to recover the
information in two-sample data. Let n ≤ min{n1, n2}. Then, we can construct a set
of n samples of (y1i,y2i ; i = 1, · · · , n) randomly and apply the 2SLVR estimation
method. We repeat the same procedure and apply the 2SLVR estimation method.
It may be possible to combine many sets of estimates in subsampling to make a
statistical inference in a efficient way by using this type of statistical resampling
procedure.

5 Numerical Evaluation of Finite Distributions

It is important to investigate the finite sample properties of estimators partly because
they are not necessarily the same as their asymptotic properties. One simple example
would be the fact that the exact moments of the LIML estimator in one-sample case
do not necessarily exist. In that case it is meaningless to compare the exact MSEs
of alternative estimators and their Monte Carlo analogues. Although we discuss the
asymptotic properties of the 2SLVR estimator, we need to investigate their relevance
for practical applications.

There is a notable difference between the results in Theorems in Section 3, that
is, the asymptotic variance depends on the 3rd and 4th order moments of the distur-
bance terms in the former. The finite sample properties of the LIML estimator for
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one-sample have been investigated by Anderson, Kunitomo and Matsushita (2011)
in a systematic way. As typical examples, we present only 9 figures (Figures 1-9)
among many other simulation cases we have done. We have used the numerical esti-
mation of the cumulative distribution function (cdf) of the 2SLVR estimator based
on the simulation and we have enough numerical accuracy in most cases.
To make interpretation easier, we set n1 = n2 = n = 100, β2 = 1 (G2 = 1),
ω11 = 1, ω12 = 0 and K1 = 0. Then, the key parameters in figures are K2 (or K2n),

n −K (or qn and δ2 = Π
(n)′

22 (1
2
[A

(1)
22.1 +A

(2)
22.1)Π

(n)
22 )/σ

2. The empirical distributions
of the normalized 2SLVR and 2STSLS estimators are traced by the red-curve and
blue-curve, respectively. In addition to the 2SLVR estimator, we have added the
distribution function of the 2STSLS estimator and the normal distribution for com-
parisons. The figures (Figures 1-9) show the estimated cdf of two estimators in the
standard form, that is,

(5.1)
1

σ
[Π

(n)′

22

1

2
(A

(1)
22.1 +A

(2)
22.1)Π

(n)
22 ]

1/2
(
β̂2 − β2

)
.

In our simulations, we first generate the normal random numbers for Π
(n)
22 , Z

(k)
2n (k =

1, 2), which are fixed. Then, we draw the empirical distribution function of estima-
tors with 10,000 replications. (It is 100,000 when K2n = 2.) Our numerical compu-
tation method is similar to the one used in Anderson et al. (2011) except that all
computations were done by a new R-program.

The limiting distributions of the 2SLVR and 2STSLS estimators are N(0, 1) in
the standard large sample asymptotics, that is, when K1 is a fixed number while
n does to ∞. The corresponding limiting distributions of the 2SLVR estimators in
the large K2 asymptotics are N(0, a) (a = Ψ∗−1Ψ∗∗, a ≥ 1), which are traced by the
black-curve in Figures 1-9.

From these figures, we have found that the effects of many instruments on the
cdfs of the estimators are significant and the approximations based on the standard
large sample asymptotics are often inferior while the large-K2 asympptotics give
reasonable approximations when K2 is large. The empirical distribution function
of the normalized 2SLVR estimator is close to the standard normal distribution
and it has slightly more variation around the true value. It corresponds the result
of Theorem 1 and a ≥ 1. On the other hand, the empirical distribution of the
normalized 2STSLS estimator has often bias when K2 is not small. When Ω22 is
large and cν > 0, the negative bias becomes large and it agrees with the results of
Theorem 2. At the same time, we also have found that the effects of non-normality
of disturbance terms on the cdf of the 2SLVR estimator are often very small. (The
dashed curves and x are almost identical.) The distribution of the 2STSLS estimator
has significant bias with many instruments.
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Figure 1: Ω22=1, K2=2
(Distributions of 2SLVR and 2STSLS, n=100.)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: Ω22=1, K2=20
(Distributions of 2SLVR and 2STSLS, n=100.)
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Figure 3: Ω22=1, K2=50
(Distributions of 2SLVR and 2STSLS, n=100.)
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Figure 4: Ω22=10, K2=2
(Distributions of 2SLVR and 2STSLS, n=100.)
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Figure 5: Ω22=10, K2=2
(Distributions of 2SLVR and 2STSLS, n=100.)
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Figure 6: Ω22=10, K2=50
(Distributions of 2SLVR and 2STSLS, n=100.)
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Figure 7: Ω22=10, K2=2,correlated in-
struments
(Distributions of 2SLVR and 2STSLS, n=100.)
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Figure 8: Ω22=10, K2=50,correlated in-
struments
(Distributions of 2SLVR and 2STSLS, n=100.)
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Figure 9: Ω22=10, K2=50, correlated instruments
(Distributions of 2SLVR and 2STSLS, n=100.)

6 Concluding Remarks

In this paper we have investigated on the asymptotic properties of the 2SLVR es-
timator when both the sample size and the number of instruments are large, that
is, the case of many instruments. While two-sample version of the 2STSLS is badly
biased, the 2SLVR estimator has the asymptotic optimality in the case of many in-
strumental variables. Our numerical results in Section 5 agree with the asymptotic
results when the sample size is finite.

Hence, our results of this paper has suggested a guidance on the use of alter-
native estimation methods in structural equation estimation in econometrics and
the Mendelian Randomization (MR) in biometrics where we may have many instru-
ments.

There are a number of problems to be investigated. First, there are conditions
imposed may be restrictive, we will need to investigate our results by relaxing them.
Second, there are some literature in econometrics to extend the one-sample LIML,
GMM and TSLS estimation methods such as Kunitomo (2011) for possible het-
eroscedasticity of noise terms, for instance.. It may be interesting to extend this line
of study to the two-sample structural equation estimation. Third, the validity of
instruments when we have many possible candidates may be important. This prob-
lem is related to the model selection when we have many instruments. Fourth, the
linear structural equation estimation can be generalized to the non-linear models,
but there may be some problem when there are many instruments. Finally, since
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there are a growing number of applications both in econometrics and bio-metrics.
We are currently investigating these issues.
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APPENDIX A : Mathematical Derivations

In this Appendix we give the proofs of Theorems and the mathematical derivation in
Section 3. Many arguments are similar to those in AKM (2010) for the one-sample
case and the proof of Theorem 3 is almost the same as the one in AKM (2010),
which is added for the sake of expository completeness.

(i) Proof of Theorem 1 :

We take A22.1 = A
(1)
22.1 and use the n×K2n matrix Z

∗(k)
2n , which is orthogonal to the

n×K1 matrix Z
(k)
1 (k = 1, 2), extensively. We intestigate the asymptotic behaviors

of (1/n)G and (1/qn)H when both n and K2n are large. From (2.2) and (2.3),

g11 = [Π
′

1n(Z
(1)′

1 ,Z
(1)
2n )

′
+ v

′

1]P̄Z
(1)
1
Z

(1)
2n (Z

∗(1)′
2n Z

∗(1)
2n )−1Z

(1)
2n P̄Z

(1)
1
[(Z

(1)
1 ,Z

(1)
2n )Π1n + v1]

= π
(n)′

21 Z
∗(1)′
2n Z

∗(1)
2n π

(n)
21 + π

(n)′

21 Z
∗(1)′
2n v1 + v

′

1Z
∗(1)
2n π21 + v

′

1Z
∗(1)
2n (Z

∗(1)′
2n Z

∗(1)
2n )−1Z

∗(1)′
2n v1 .

Then

g11 − [π
(n)′

21 A
(1)
22.1π

(n)
21 +K2nω11](A.1)

= π
(n)′

21 Z
∗(1)′
2n v1 + v

′

1Z
∗(1)
2n π

(n)
21 + [v

′

1Z
∗(1)
2n (Z

∗(1)′
2n Z

∗(1)
2n )−1Z

∗(1)′
2n v1 −K2n ω11] .

Conditions (I) and (II) imply that as n −→ ∞

(A.2)
1

n
π

(n)′

21 Z
∗(1)′
2n v1

p−→ 0 ,

and

(A.3)
1

n

[
v

′

1Z
∗(1)
2n (Z

∗(1)′
2n Z

∗(1)
2n )−1Z

∗(1)′
2n v1 −K2nω11

]
p−→ 0 .

It is because (A.2) is the result of direct evaluation of

Var[
1√
n

n∑
i=1

π
(n)′

21 z
∗(1)
2n.iv1i] =

1

n
ω11π

(n)′

21

n∑
i=1

z∗2n.iz
∗
2n.iπ21 = ω11π

(n)′

21

1

n
A

(1)
22.1π

(n)
21 .

For (A.3), we use the notation pij(1) = (P
Z

∗(1)
2n

)ij (i, j = 1, · · · , K2n) and∑n
i,j=1[v1iv1jpij(1)−ω11pij(1)δ(i, j)] =

∑n
i=1[(v

2
1i−ω11)pii(1)]+2

∑n−1
i>j=1 v1iv1jpij(1).

Then the variance becomes
∑n

i=1 E[(v
2
1i−ω11)pii(1)]

2+4
∑n−1

i>j=1 ω
2
11pij(1)

2 = E[v41i−
3ω2

11]
∑n

i=1 pii(1)]
2 + 2

∑n
i,j=1 ω

2
11pij(1)

2. By using the relations 0 ≤ pii < 1 and∑n
i,j=1 p

2
ij = K2n, we have the result.

Similarly, we expand g21 and G22 as

g21 = [Π
′

1n(Z
(1)′

1 ,Z
(1)
2n )

′
+ v

′

1]P̄Z
(1)
1
Z

(1)
2nA

(2)
22.1Z
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Z
(2
2
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′(n)
21 Z
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′
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22.1Π

(n)
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+v
′

1Z
∗(1)
2n (Z
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2n Z

∗(2)
2n )−1Z
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2n V2 ,
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and

G22 = [Π
′

2n(Z
(2)′

1 ,Z
(2)
2n )

′
+V

′

2]P̄Z
(2)
1
Z

(2)
2nA

(2)
22.1Z

∗(2)′
2n P̄

Z
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2
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For h11 and H22, we use the expressions :

h11 = [Π
′

1n(Z
(1)′

1 ,Z
(1)
2n )

′
+ v

′

1]P̄(Z
(1)
1 ,Z

(1)
2n )

[(Z
(1)
1 ,Z
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2n )Π1n + v1] = v

′

1P̄(Z
(1)
1 ,Z
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v1 ,

and

H22 = [Π
′

2n(Z
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′
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(2)
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(2)
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[(Z
(2)
1 ,Z

(2)
2n )Π2n +V2] = V

′

2P̄(Z
(2)
1 ,Z

(2)
2n )
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Then, we evaluate each terms of G/n and H/qn as n and K2n increase. The first
and last terms of each components of G/n are

(A.4)
1

n

[
π

(n)′

21 A
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22.1π

(n)
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Π
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,

and

(A.5)
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,

respectively.
The block-diagonal elements of the second matrix are (K2n/n)(1/K2n)v

′
1PZ

∗(1)
2n

v1

and (K2n/n)(1/K2n)V
′
2PZ

∗(2
2n
V2, and then, by using tr(P

Z
∗(k)
2n

) = K2n (k = 1, 2),

they converge to c ω11 and c Ω22, respectively. Since v1 and V2 are mutually
independent, the off-block-diagonal parts converge to zeros in probability. By using
the relation (2.4) and Condition (II), as n −→ ∞,

(A.6)
1

n
G

p−→ G0 =

[
β

′

2

IG2

]
Φ22.1(β2, IG2) + c Ω .

Since h11 and H22 are quadratic forms of v1 and V2, and tr(P̄
(Z

(k)
1 ,Z

(k)
2n )

) = qn (k =

1, 2), by using a similar argument, we have

(A.7)
1

qn
H

p−→ Ω = (
ω11 0

′

0 Ω22
) .

Then, by using that λn is the minimum root of (2.11), λn
p→ c as n → ∞ and we

find that β̂2.LV R

p→ β as n → ∞.
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Define G1, H1, λ1n and b1 by G1 =
√
n( 1

n
G − G0), H1 =

√
qn(

1
qn
H − Ω),

λ1n =
√
n(λn − c), b1 =

√
n(β̂LV R − β). From (2.10),

[G0 − c Ω]β +
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1
√
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1√
n
) .

Since (G0 − c Ω)β = 0 and β̂
′

LV R = (1,−β̂
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2.LV R), (2.10) gives
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Multiplication of (A.8) from the left by β
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2) yields

(A.10) λ1n =
β

′
(G1 −

√
cc∗H1)β

β
′
Ωβ

+ op(1) .

Also multiplication of (A.8) from the left by (0, IG2) and substitution for λ1n from
(A.10) yields
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Define the vector u such thatVβ = u andV = (v1,V2). From the above expression,
we need to evaluate each terms of (G1−

√
cc∗H1)β and there are five terms, but we

have evaluated each elements of the first term by (A.6) and (A.7). The second term
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(n)
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p→ 0.
Then, we need to evaluate three terms for the asymptotic distribution of the nor-
malized 2SLVR estimator. (Two terms due to G1 and one term due to H1.) The
first term has the form

gh(1) =
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which is asymptotically equivalent to
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It is because the variance-covariance matrix of the difference
(1/

√
n)Π

′(n)
22 [A

(2)
22.1(Z

∗(2)′
2n Z

∗(2)′
2n )−1Z
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2n − In]v1 is given by

ω11
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which is stochastically op(1) under Condition (II∗).
The asymptotic covariance matrix of the first term (A× gh∗(1)) is given by

1

n
A[

π
(
21n)
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Π
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22

][ω11Z
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2n ][π

(n)
21 ,Π

(n)
22 ]A

′ p−→ σ2Φ22.1

by using Condition (II).
We use the standard CLT to gh∗(1) instead of the first tem gh(1). By applying the
CLT to

(A.13) (
1√
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Π
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22 [Z
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for any vector a, t
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2n,i and t

(n)
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22 z
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2n,i with Condition

(IV) to have the asymptotic normality. (Condition (IV) is needed to have the
Lindberg-type condition for Part (i).

The second term has the form

(A.14) gh(2) =
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The third term has the form

(A.15) gh(3) =
1

√
qn

[
gh1(3)
gh2(3)

]
+ op(1) ,

where gh1(3) = v
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Because each of the second and third terms are quadratic forms of v1 and V2,
their covariances depend on the fourth-order moments of disturbances in the general
case.
We utilize the representation of

(A.16)
√
nΦ22.1(β̂2.LV R − β2) = A[gh(1) +
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cgh(2)−

√
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where A = (0, IG2)[IG2+1 − Ωββ
′

β
′
Ωβ

].

To evaluate the covariance matrices of the second and third terms (A
√
cgh(2) and

A(
√
cc∗)gh(3)), and their asymptotic distributions, we prepare two lemmas.

Lemma 1 : Let wi are p-dimensional i.i.d. random vectors with E[wi] = 0 and
E[wiw

′
i] = Σ and the fourth-order moments exist. Let W = (w

′
i) be n× p random

matrix and wi are mutually uncorrelated. For any symmetric matrices A ,B and
any vectors ak,bk (k = 1, 2),
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Proof of Lemma 1 : We re-write the summation
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Then, we take the expectations of each terms of summations with the cases of (i) i =
j = k = l , (ii) i = j ̸= k = l, (iii) i = k ̸= j = l and (iv) i = l ̸= j = k. By direct cal-
culations, the first term is
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(Q.E.D. of Lemma 1)

Lemma 2 : Let t
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where we define

p∗ij(1, 2) (= p∗ji(2, 1)) = (Z
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1
√
qn

n∑
i,j=1

[δ(i, j)− qij(1)][v1iv1j − ω11δ(i, j)] ,

and

t
(n)
32 =

1
√
qn

n∑
i,j=1

[δ(i, j)− qij(2)][v2iv
′

2j − δ(i, j)Ω22]β2 ,

where qij(k) = (P
(Z

(k)
1 ,Z

(k)
2n
)ij (k = 1, 2).

Then, under the conditions in Theorem 1, t
(n)
11 , t

(n)
12 , t

(n)
21 , t

(n)
22 , t

(n)
31 and t

(n)
32 have the

asymptotic normality.

A Scketch of Proof of Lemma 2 :
The proof of Lemma 2 is based on straightforward, but the results of lengthy cal-
culations, which are quite similar to Lemma 3 of AKM (2011). We have shown

the asymptotic normality of t
(n)
11 and t

(n)
12 already. The proof of other terms is the

results of applying the martingale CLT (Theorem 3.5 of Hall and Heyde (1980) for

instance). We illustrate an outline of the proof for the first term of t
(n)
21 as a typical

case. (The derivations of the asymptotic normality for other terms are similar and
we have omitted the details.)
Let Fn.i be the σ-field generated by the random variables v1j (j ≤ i ≤ n) and
Fn,0 be the initial σ− field. We define a sequence of martingale differences as
Xni = (1/

√
K2n)[(v

2
1i − ω11)pii(1) + 2

∑
i>j=1 v1iv1jpij(1)] for i = 1, · · · , n. Then

E[Xni|Fn,i−1] = 0 andE[X2
ni|Fn,i−1] =

1
K2n

E[(v1i−ω11)
2]pii(1)

2+4ω2
11

1
K2n

∑
i>j=1 pij(1)

2.
Then, we need to show that

(A.18)
n∑

i=1

E[X2
ni|Fn,i−1]−

n∑
i=1

E[X2
ni]

p−→ 0 .

This can be done by decomposing

1

n

n∑
i=1

[
i−1∑
j=1

v1jpij(1)]
2 − 1

n
[ω11

i−1∑
j=1

pij(1)
2]

=
1

n
[

i−1∑
j=j′=1

(v21j − ω11)pij(1)
2 + 2

i−1∑
j>j′=1

v1jv11j′pij(1)pij′ (1)]

and evaluating the variances of each terms.
The variance of the first term is less than (1/n)2

∑n
i=1

∑n
j=1E[(v

2
1i − ω11)

2]pij(1)
2,

27



which converges to zero in probability because the matrix (pij) is a projection.
The variance of second term is less than ω2

11(1/n)
2
∑n

i=1

∑n
j,j′=1 pij(1)

2pij′ (1)
2 which

converges to zero in probability because the matrix (pij(1)) is a projection.
Finally, we utilize that for any ξ > 0 and ν > 0,

∑n
i=1E[X

2
niI(|Xni ≥ ξ)] ≤

(1/ξ)ν
∑n

i=1E[X
2+ν
ni ] and the moment condition E[∥vi∥4+ϵ] < ∞ (ϵ > 0) when c ̸= 0

in Section 3 to show the Lindeberg-type condition (ξ → ∞) in the present situation.
(End of A Scketch of Proof of Lemma 2)

By using Lemma 1, we calculate the asymptotic variance-covariances of gh(2)
((1/

√
K2n)[gh11(2)−gh12(2)β2] and (1/

√
K2n)[gh21(2)−gh22(2)β2), which is given

by

D2 =

[
Γ(v1)

1
K2n

∑n
i=1 p

2
ii(1) 0

′

0 Γ(v2)
1

K2n

∑n
i=1 p

2
ii(2)

]

+

[
2ω2

11 + ω11β
′

2Ω22β2 −β
′

2Ω22

−Ω22β2 ω11Ω22 + (β
′

2Ω22β2)Ω22 +Ω22β2β
′

2Ω22

]
,

where we use the notation pii(k) = p
(n)
ii (P

Z
∗(k)
2n

) (k = 1, 2; i = 1, · · · , n).
By using a simple calculation, the second term of D2 is equivalent to D

(2)
2 = σ2Ω+

Ωββ
′
Ω. Then, since σ2 = ω11 + β

′

2Ω22β2, we have the relation

AD
(2)
2 A

′
= σ2[Ω22 −

1

σ2
Ω22β2β2Ω22] .

By using Lemma 1, we calculate the asymptotic variance-covariances of gh(3)
(gh1(3) = (1/

√
qn)v

′
1[In −P

(Z
(1)
1 ,Z

(1)
2n )

]v1 − qnω11 and

gh2(3) = (1/
√
qn)[−(V

′
2[In −P

(Z
(2)
2 ,Z

(2)
2n )

]V2β2 − qnΩ22β2)], which is given by

D3 =

[
Γ(v1)

1
qn

∑n
i=1(1− pii(1))

2 0
′

0 Γ(v2)
1
qn

∑n
i=1(1− pii(2))

2

]

+

[
2ω2

11 0‘

0 (β
′

2Ω22β2)Ω22 +Ω22β2β
′

2Ω22

]
.

We denote the second term of D3 as D
(2)
3 and use the fact that

D
(2)
3 = 2(ω11)

2e1e
′

2 + (
0 0

′

0 Ω22
)ββ

′
(
0 0

′

0 Ω22
) + β

′

2Ω22β2(
0 0

′

0 Ω22
) .

Then, by using a simple calculation, we have

AD
(2)
3 A

′
= β

′

2Ω22β2Ω22 +Ω22β2β
′

2Ω22[4(
ω11

σ2
)2 − 1] .
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For the asymptotic distribution of estimator under non-normal case, we need to eval-
uate the cross products of the second and third terms, that is, −AE[gh(2)gh

′
(3) +

gh(3)gh
′
(2)]A

′
= −A[D23 +D32]A

′
, where

D23 =

[
Γ(v1)

1√
K2nqn

∑n
i=1 pii(1)(1− pii(1)) 0

′

0 Γ(v2)
1√

K2nqn

∑n
i=1 pii(2)(1− pii(2))

]

+o(1) .

We consider the effects of fourth-order moments of disturbance terms. Define cn =
K2n/n and then the coefficient of Γ(v1) becomes

1

n

n∑
i=1

[pii(1)]
2 + (

cn
1− cn

)2
1

n

n∑
i=1

[1− pii(1)]
2 − 2(

cn
1− cn

)
1

n

n∑
i=1

pii(1)][1− pii(1)]

= (
1

1− cn
)2
1

n

n∑
i=1

[pii(1)− cn]
2

by using
∑n

i=1 pii(X1) = K2n and (1/n)
∑n

i=1(pii(1)−c)2 = (1/n)
∑n

i=1(pii(1))
2−c2n.

Similarly, we find that the coefficient of Γ(v2) becomes ( 1
1−cn

)2 1
n

∑n
i=1[pii(2)− cn]

2.

Finally, by using the central limit theorem (CLT) in Lemma 2 for every constant
vector a

′
from the left, we have the asymptotic normality with the asymptoticvari-

ance a
′
Ψ∗∗a and it proves (ii) of Theorem 1.

Q.E.D

(ii) Proof of Theorem 2 :
(Step 1, The case of 0 ≤ ν < 1/2, 2SLVR and 2STSLS.)
For the 2SLVR estimation, we use the similar arguments as the proof of Theorem
1, but we need additional derivations because of the possible heteroscedasticity of
disturbances. The limiting distribution of the 2STSLS estimator is the same as
the2SLVR estimator when 0 ≤ ν < 1/2.
For the 2STSLS estimation, from (2.13) and (A.6), we use the representation

(A.19)

[
(Φ22.1β2,Φ22.1) +

1√
n
G∗∗

1

] [
1

−β̂2.TS

]
= 0 ,

where G∗∗
1 =

√
n
[
( 1
n
g21,

1
n
G22)− (Φ22.1β2,Φ22.1)

]
.

We make use of the fact that P
Z

∗(k)
2n

(k = 1, 2) is idempotent of rank K2n and the

boundedness of E[v4ji|z
∗(k)
2n,i ] (k=1,2) implies a Lindeberg condition

sup1≤i≤n E
[
v

′
iviI(v

′
ivi > a)|z∗(k)2n,1, · · · , z

∗(k)
2n,n

]
p−→ 0 (a → ∞) . By taking the expec-

tation of v
′
1PZ

∗(1)
2n

v1, and E[v
(n)
i v

(n)′

i |z∗(1)2n,1, · · · , z
∗(1)
2n,n] is bounded. Then, there is a
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(constant) ω̄11 such that

E[
1√
n
v

′

1PZ
∗(1)
2n

v1] = E[
1√
n

n∑
i=1

ω
(n)
11,ip

(n)
ii (1)](A.20)

≤ K2n√
n
ω̄11 −→ 0

when 0 < ν < 1/2.

Hence, by using the same argument, we find that (1/
√
n)v

′
1PZ

∗(1)
2n

v1
p→ 0 and

(1/
√
n)V

′
2PZ

∗(2)
2n

V2
p→ O as n → ∞.

For the 2SLVR estimation, (2.13) implies

(A.21)

[(
β

′

2

IG2

)
Φ22.1(β2, IG2) + (

1√
n
G∗

1 − λn
1

qn
H)

](
1

−β̂2.LV R

)
= 0 ,

where G∗
1 =

√
n[(1/n)G−G0].

By using the facts that (1/
√
n)G∗

1

p→ O, λn
p→ 0 (Lemma 3 below) and [1/qn]H

p→
Ω, we have

Φ22.1(β2, IG2)plimn→∞

[
1

−β̂2.TS

]
= 0 , Φ22.1(β2, IG2)plimn→∞

[
1

−β̂2.LV R

]
= 0 ,

which imply plimn→∞β̂2.TS = β2 and plimn→∞β̂2.LV R = β2 because Φ22.1 is positive
definite under Condition (II).
Then, by using (2.13), we use the representation

√
n

[(
β

′

2

IG2

)
Φ22.1 (β2, IG2) + (

1√
n
G∗

1 − λn
1

qn
H)

] [
β + (β̂LV R − β)

]
= 0.

We prepare the following lemma, which is the same as Lemma 4 in AKM (2010)
and the proof is omitted)

Lemma 3 : Let λn (n > 2) be the smallest root of (2.11). (i) For 0 < ξ < 1− ν and
0 ≤ ν < 1 ,

(A.22) nξλn
p−→ 0

as n → ∞. (ii) For 0 ≤ ν < 1,

(A.23)
√
n

[
λn −

K2n

n

]
p−→ 0

as n −→ ∞ .
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Since
√
n λn

p→ 0 when 0 ≤ ν < 1/2 due to Lemma 3, the asymptotic distribu-
tions of the 2LVR and 2TSLS estimators are equivalent, and we have

(A.24) Φ22.1

√
n(β̂2.LV R − β2)− (0, IG2)G

∗
1β

p→ 0 .

We notice that for k = 1, 2

1

n

n∑
i=1

Ω
(n)
i ⊗Π

(n)′

22 z
∗(k)
2n,iz

∗(k)′
2n,i Π

(n)
22 −Ω⊗Φ22.1

=
1

n

n∑
i=1

(Ω
(n)
i −Ω)⊗Π

(n)′

22 z
∗(k)
2n,iz

∗(k)′
2n,i Π

(n)
22

+
1

n

n∑
i=1

Ω⊗
[
Π

(n)′

22 z
∗(k)
2n,iz

∗(k)′
2n,i Π

(n)
22 −Φ22.1

]
p−→ O

because Condition (II) and the conditions imposed on Ω
(n)
i (i = 1, · · · , n).

With the notation of the proof of Theorem 1,
√
n[β̂2.LV R − β2] is asymptotically

equivalent to A× gh(1), which in turn is asymptotically equivalent to A× gh∗(1).

By applying the CLT to (1/
√
n)Π

(n)′

22 [Z
∗(1)′
2n v1 − Z

∗(2)′
2n V2β2], we obtain the limiting

normal distribution N(0, σ2Φ22.1). (Condition (IV) is needed to have the Lindberg-
type condition.)
This proves the first part of (i) in Theorem 2 for the 2SLVR estimator and the last
part (ii) for the 2STSLS estimator when 0 ≤ ν < 1/2.

(Step 2, The case of 1/2 < ν < 1, 2SLVR. )
We consider the asymptotic distribution of the 2SLVR estimator when 1/2 ≤ ν < 1.
In this case, there is a complication because there are four terms in each elements
of G (g11, g21, G22) and their stochastic orders are Op(n), Op(

√
n), Op(

√
n) and

Op(n
ν) with possible heteroscedasticity of disturbances.

By using Part (ii) of Lemma 3 and the facts that λn
p−→ 0 and [n/K2n]×(A.8)

converges to Ω in probability, we have β̂2.LV R − β2

p−→ 0 . By multiplying β
′
from

the left to (A.8), we have

β
′

{
√
n[
K2n

n
− λn]Ω+

1√
n

[
v

′
1Z

∗(1)
2n π

(n)
21 v

′
1Z

∗(1)
2n (Z

∗(1)′
2n Z

∗(1)′
2n )−1A

(2)
22.1Π

(n)
22

V
′
2Z

∗(2)
2n π

(n)
21 V

′
2Z

∗(2)
2n Π

(n)
22

]

+
1√
n

[
π

(n)′

21 Z
∗(1)′
2n v1 π

(n)′

21 Z
∗(1)′
2n V2

Π
′(n)
22 A

(2)
22.1(Z

∗(1)′
2n Z

∗(1)′
2n )−1Z

∗(1)′
2n v1 Π

(n)′

22 Z
∗(2)′
2n V2

]
− λn

√
n

qn
H1

}
×
[
β + (β̂2.LV R − β)

]
∼ op(1) .
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Multiply (A.8) with cν instead of c on the left by (0, IG2) to obtain approximately

(0, IG2)
√
n

{[(
β

′

2

IG2

)
Φ22.1

(
β

′

2, IG2

)
+

K2n

n
Ω

]
+

1√
n

[(
β

′

2

IG2

)
Π

(n)′

22 (Z
∗(1)′
2n v1,Z

∗(1)′
2n V2) +

1√
n
V

′
(Z

∗(1)
2n ,Z

∗(2)
2n )(π

(n)
21 ,Π

(n)
22 )

]
+

1√
n

[
π

(n)′

21 Z
∗(1)′
2n v1 π

(n)′

21 Z
∗(1)′
2n V2

Π
(n)′

22 A
(2)
22.1(Z

∗(1)′
2n Z

∗(1)′
2n )−1Z

∗(1)′
2n v1 Π

(n)′

22 Z
∗(2)′
2n V2

]
− λn

1

qn
H

}
×
[
β + (β̂2.LV R − β)

]
∼ op(1) .

From the above expression, we need to evaluate the effects of heteroscedasticity of
disturbance terms (v1i,v2i) (i = 1, · · · , n) are negligible for the results of asymptotic
distributions. For any constant vectors a and b, there exists a positive constant A1

such that for k = 1, 2 we have

1

n
E

[
n∑

i,j=1

[pij(1) + pij(2)]× a
′
(v

(n)
i v

(n)′

j − δjiΩ
(n)
i )b

]2

≤ 2
1

n
E

[
n∑

i=1

[pii(1)
2 + pii(2)

2][a
′
(viv

′

i −Ω
(n)
i )b]2 +

∑
i ̸=j

[pij(1)
2 + pij(1)

2][a
′
vivjb]

2

+
∑
i ̸=j

[pij(1)
2 + pij(1)

2][a
′
viv

′

jba
′
vjv

′

ib]

]

≤ A1
K2n

n
−→ 0 .

It is because the conditional moments of the disturbance terms v4ji are bounded,∑n
i=1 p

(n)
ii = K2n and we have the relation

∑n
i=1 p

(n)2
ii ≤ K2n due to the projection

matrix.
Then, we find

1√
n

[(
v

′
1Z

∗(1)
2n (Z

∗(1)′
2n Z

∗(1)
2n )−1Z

∗(1)′
2n v1 v

′
1Z

∗(1)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

V
′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(1)′
2n v1 V

′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

)
−K2nΩ

]
p−→ O

when 0 ≤ ν < 1 . We use (2.10) and the relation that[(
β

′

2

IG2

)
Φ22.1

(
β

′

2, IG2

)
+

K2n

n
Ω− λn

1

qn
H

]
β = op(

1√
n
) .

By multiplying the preceding equation out to separate the terms with factor β and
with the factor

√
n (β̂2.LV R − β), we have

(0, IG2)

[(
β

′

2

IG2

)
Φ22.1

(
β

′

2, IG2

)√
n(β̂LV R − β) +

1√
n
Π

′

2∗(Z
∗(1)
2n ,Z

∗(1)
2n )

′
Vβ

]
p→ 0 ,
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which is asymptotically equivalent to

Φ22.1

√
n(β̂2.LI − β2)−

1√
n
Π

(n)′

22 [Z
∗(1)′
2n v1 − Z

∗(2)′
2n V2β2]

p→ 0 .

By applying the CLT to the second term, we complete the proof of (i) of Theorem
2 for the 2SLVR estimator of β when 1/2 ≤ ν < 1 .

(Step 3, The case of 1/2 ≤ ν < 1, 2STSLS. )
Next, we shall investigate the asymptotic property of the 2STSLS estimator. We

set β̂
′

TS = (1,−β̂
′

2.TS), which is the solution of (2.13). By evaluating each term of

(0, IG2)
√
n

[(
β

′

2

IG2

)
Φ22.1

(
β

′

2, IG2

)
+

1√
n
G∗

1

] [
β + (β̂TS − β)

]
= 0 ,

we have

(A.25) [Φ22.1]
√
n(β̂2.TS − β2)−G∗∗

1 β = op(1) .

Then the limiting distribution of
√
n(β̂2.TS − β2) is the same as that of Φ−1

22.1G
∗∗
1 β.

By using

1

K2n

[
v

′
1Z

∗(1)
2n (Z

∗(1)′
2n Z

∗(1)
2n )−1Z

∗(1)′
2n v1 v

′
1Z

∗(1)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

V
′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(1)′
2n v1 V

′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

]
p−→ Ω ,

and then the asymptotic bias becomes [K2n/
√
n]Ωβ → (−cν)Ω22β2.

We apply the CLT as (i), we have the result for the 2STSLS estimator of β when
ν = 1/2.
When 1/2 < ν < 1, we notice

n1−ν

[
1

n
G−

(
β

′

2

IG2

)
Φ22.1

(
β

′

2, IG2

)]
β

=
K2n

nν
Ωβ +

1

nν
Π

(n)′

22 [Z
∗(1)′
2n v1 − Z

∗(2)′
2n V2β2]

+
1

nν

[
(
v

′
1Z

∗(1)
2n (Z

∗(1)′
2n Z

∗(1)
2n )−1Z

∗(1)′
2n v1 v

′
1Z

∗(1)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

V
′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(1)′
2n v1 V

′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

)−K2nΩ

]
β.

Because the last two terms of the right-hand side except the first term are of the
order op(n

−ν), we have

n1−ν

[
1

n
G− 1

n

(
v

′
1Z

∗(1)
2n (Z

∗(1)′
2n Z

∗(1)
2n )−1Z

∗(1)′
2n v1 v

′
1Z

∗(1)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

V
′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(1)′
2n v1 V

′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

)]
p−→ cνΩβ
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as n −→ ∞. Hence by using the similar arguments as (i),

(0, IG2)
1

n

(
v

′
1Z

∗(1)
2n (Z

∗(1)′
2n Z

∗(1)
2n )−1Z

∗(1)′
2n v1 v

′
1Z

∗(1)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

V
′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(1)′
2n v1 V

′
2Z

∗(2)
2n (Z

∗(2)′
2n Z

∗(2)
2n )−1Z

∗(2)′
2n V2

)
× n1−ν(β̂2.TS − β2)− (0, IG2)cΩβ

p→ 0

and we complete the proof of (ii) of Theorem 2 for the 2STSLS estimator when
1/2 ≤ ν < 1. Q.E.D.

(iii) On the Proof of Theorem 3 :
We set the vector of true parameters β

′
= (1,−β

′

2) = (1,−β2, · · · ,−β1+G2). For
the estimator of β2 to be consistent we need the conditions

(A.26) βk = ϕk

[(
β

′

2

IG2

)
Φ22.1 (β2, IG2) + cΩ,Ω

]
(k = 2, · · · , 1 +G2)

as identities in β2, Φ22.1, and Ω. Let a (1 +G2)× (1 +G2) matrix

(A.27) T(k) =

(
∂ϕk

∂gij

)
= (τ

(k)
ij ) (k = 2, · · · , 1 +G2; i, j = 1, · · · , 1 +G2)

evaluated at the probability limits of (A.26). We denote a (1+G2)×(1+G2) matrix
Θ (= (θij))

Θ =

(
β

′

2

IG2

)
Φ22.1 (β2, IG2) =

[
β

′

2Φ22.1β2 β
′

2Φ22.1

Φ22.1β2 Φ22.1

]
,

where Φ22.1 = (ρm,l) (m, l = 2, · · · , 1+G2), (Φ22.1β2)l =
∑1+G2

j=2 βjρlj (l = 2, · · · , 1+
G2), (β

′

2Φ22.1)m =
∑1+G2

i=2 βiρim (m = 2, · · · , 1+G2), and β
′

2Φ22.1β2 =
∑1+G2

i,j=2 ρijβiβj .
By differentiating each components of Θ with respect to βj (j = 2, · · · , G2), we have

(A.28)
∂Θ

∂βj

= (
∂θlm
∂βj

) ,

where ∂θ11
∂βj

= 2
∑1+G2

i=2 ρjiβi (j = 2, · · · , 1 + G2),
∂θ1m
∂βj

= ρjm (m = 2, · · · , 1 + G2),
∂θl1
∂βj

= ρlj (l = 2, · · · , 1 +G2), and
∂θlm
∂βj

= 0 (l,m = 2, · · · , 1 +G2) .

Hence

(A.29) tr

(
T(k) ∂Θ

∂βj

)
= 2τ

(k)
11

1+G2∑
i=2

ρjiβi + 2

1+G2∑
i=2

ρjiτ
(k)
ji = δkj ,

where we define δkk = 1 and δkj = 0 (k ̸= j). Define a (1+G2)× (1+G2) partitioned
matrix

T(k) =

[
τ
(k)
11 τ

(k)′

2

τ
(k)
2 T

(k)
22

]
.
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Then, (A.29) is represented as 2τ
(k)
11 Φ22.1β+2Φ22.1τ

(k)
2 = ϵk, where ϵ

′

k = (0, · · · , 0, 1, 0, · · · , 0)
with 1 in the k-th place and zeros in other elements.
Since Φ22.1 is positive definite, we have

(A.30) τ
(k)
2 =

1

2
Φ−1

22.1ϵk − τ
(k)
11 β2 .

Further, by differentiating Θ with respect to ρij, we have

(A.31)
∂Θ

∂ρii
= (

∂θlm
∂ρii

) ,

where ∂θ11
∂ρii

= β2
i , ∂θ1m

∂ρii
= βi (m = i), 0 (m ̸= i) , ∂θl1

∂ρii
= βi (l = i), 0 (l ̸= i) and

∂θlm
∂ρii

= 1 (l = m = i), 0 (otherwise). For i ̸= j

(A.32)
∂Θ

∂ρij
= (

∂θlm
∂ρij

) ,

where ∂θ11
∂ρij

= 2βiβj , ∂θ1m
∂ρij

= βj (m = i), βi (m = j), 0 (m ̸= i, j) , ∂θl1
∂ρij

= βj (l =

i), βi (l = j), 0 (l ̸= i, j) , and ∂θlm
∂ρij

= 1 (l = i,m = j or l = j,m = i), 0 (otherwise)

for (2 ≤ l,m ≤ 1 +G2) .
Then we have the representation

tr

(
T(k) ∂Θ

∂ρij

)
=


β2
i τ

(k)
11 + 2τ

(k)
1i βi + τ

(k)
ii (i = j)

2βiβjτ
(k)
11 + 2τ

(k)
1j βi + 2τ

(k)
1i βj + 2τ

(k)
ij (i ̸= j)

.

In the matrix form we have as τ
(k)
11 β2β

′

2 + τ
(k)
2 β

′

2 + β2τ
(k)′

2 + T
(k)
22 = O, and then,

we have the representation

T
(k)
22 = −τ

(k)
11 β2β

′

2 − τ
(k)
2 β

′

2 − β2τ
(k)′

2

= τ
(k)
11 β2β

′

2 −
1

2

[
Φ−1

22.1ϵkβ
′

2 + β2ϵ
′

kΦ
−1
22.1

]
.

Next, we consider the role of the second matrix in (A.26). By differentiating (A.26)
with respect to ωij (i, j = 1, · · · , 1 +G2), we have the condition

c
∂ϕk

∂gij
= − ∂ϕk

∂hij

(k = 2, · · · , 1 +G2; i, j = 1, · · · , 1 +G2)

evaluated at the probability limits. Let

(A.33) S = G1 −
√
cc∗H1 =

[
s11 s

′
2

s2 S22

]
.
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Since ϕ( · ) is differentiable and its first derivatives are bounded at the true param-
eters by assumption, the linearized estimator of βk in the class of our concern can
be represented as

1+G2∑
g,h=1

τ
(k)
gh sgh = τ

(k)
11 s11 + 2τ

(k)′

2 s2 + tr
[
T

(k)
22 S22

]
= τ

(k)
11 s11 +

(
ϵ
′

kΦ
−1
22.1 − 2τ

(k)
11 β

′

2

)
s2 + tr

[(
τ
(k)
11 β2β

′

2 −Φ−1
22.1ϵkβ

′

2

)
S22

]
= τ

(k)
11

[
s11 − 2β

′

2s2 + β
′

2S22β2

]
+ ϵ

′

kΦ
−1
22.1(s2 − S22β2)

= τ
(k)
11 β

′
Sβ + ϵ

′

kΦ
−1
22.1(s2,S22)β .

Let

(A.34) τ 11 =

 τ
(2)
11
...

τ
(1+G2)
11


and we consider the asymptotic behavior of the normalized estimator

√
n(β̂2 − β2)

as

(A.35) ê =
[
τ 11β

′
+ (0,Φ−1

22.1)
]
Sβ .

Since the asymptotic variance-covariance matrix of Sβ has been obtained by the
proof of Theorem 1, Corollary 1, and Theorem 2, we have

E
[
ê ê

′
]

=

[
(τ 11 +

1

σ2
(0,Φ−1

22.1)Ωβ)β
′
+ (0,Φ−1

22.1)(IG2+1 −
Ωββ

′

β
′
Ωβ

)

]

×E [Sββ′
S]×

[
(τ 11 +

1

σ2
(0,Φ−1

22.1)Ωβ)β
′
+ (0,Φ−1

22.1)(IG2+1 −
Ωββ

′

β
′
Ωβ

)

]′

= Ψ∗∗ + E
[
(β

′
Sβ)2

] [
τ 11 + (0,Φ−1

22.1)
1

σ2
Ωβ

] [
τ

′

11 +
1

σ2
β

′
Ω

(
0

′

Φ−1
22.1

)]
+ o(1) ,

where Ψ∗∗ has been given by Theorem 1 or Theorem 2. This covariance matrix is
the sum of a positive semi-definite matrix of rank 1 and a positive definite matrix.
It has a minimum if

(A.36) τ 11 = − 1

σ2
(0,Φ−1

22.1)Ωβ .

This completes the proof of Theorem 3.
Q.E.D.
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(iv) On the Derivation of (4.2) :
In the general case, there is a complication with F. It is because the term of

√
n[γ̂1−

γ1] as
1
n
Z

(1)′

1 P̄
Z

(1)
2n
Z

(1)
2n )

−1 1√
n
Z

(1)′

1 P̄
Z

(1)
2n
v1 − ( 1

n
Z

(2)′

1 P̄
Z

(2)
2n
Z

(1)
1 )−1 1√

n
Z

(2)′

1 P̄
Z

(2)
2n
V2β2 and

the first term of
√
n(β̂2 − β2) as gh1 may have some correlation asymptotically.

We only evaluate the asymptotic covariance of

1

n
Z

(1)′

1 P̄
Z

(1)
2n
Z

(1)
2n )

−1 1√
n
Z

(1)′

1 P̄
Z

(1)
2n
v1 − (

1

n
Z

(2)′

1 P̄
Z

(2)
2n
Z

(1)
1 )−1 1√

n
Z

(2)′

1 P̄
Z

(2)
2n
V2β2

∼ M−1
11.2[

1√
n
Z

(1)′

1 P̄
Z

(1)
2n
v1 −

1√
n
Z

(2)′

1 P̄
Z

(2)
2n
V2β2]

and −Π12Φ
−1
22.1Agh(1), because the effects of Φ−1

22.1A[gh(2) + gh(3)] are asymptot-
ically negligible due to the assumption of third moments of disturbances. By using

(A.12), we evaluate the covariance of ( 1√
n
)(Z

∗(1)′
2n v1 − Z

∗(2)′
2n V2β2) and

1
n
Z

(1)′

1 P̄
Z

(1)
2n
Z

(1)
2n )

−1 1√
n
Z

(1)′

1 P̄
Z

(1)
2n
v1−( 1

n
Z

(2)′

1 P̄
Z

(2)
2n
Z

(2)
1 )−1 1√

n
Z

(2)′

1 P̄
Z

(2)
2n
V2β2. Since σ

2 =

ω11+β
′

2Ω22β2, we use the conditions in (4.3) and we arrange several terms to obtain
(4.2).
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