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Abstract

In operations research and management sciences, the data envelopment analy-
sis (DEA) has been known as one of important tools. We develop a statistical
data envelopment analysis (SDEA), which seems to be new to operations re-
search as well as statistical literature. We first consider the basic statistical
DEA model that the observed data is the sum of an increasing concave func-
tion of inputs and a non-positive random noise. The noise term can be inter-
preted as the inefficiency of inputs-output relationships. The purpose of data
analysis is to estimate the unknown function, called the efficiency frontier,
nonparametrically based on the set of observed data of inputs and outputs.
The key idea is to use the statistical methods of regression analysis and the
statistical extreme value theory (SEVT). We report an empirical analysis on
the life-insurance industry in Japan as an application.
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1 Introduction

In operations research and management sciences, the data envelopment analysis
(DEA) has been known as one of important tools. See Cooper, Seiford, and Tone
(2007) for the details of existing known methods and history in operations research.
The DEA in operations research is ususally based on the mathematical program-
ming techniques. In economics, on the other hand, the parametric statistical es-
timation method of production frontier has been known since Aigner, Lovell, and
Schmidt (1977). It is also related to the cost function and the problem is funda-
mental in micro-econometrics. They proposed a parametric nonlinear regression
model with truncated distributions such as half-normal for noise term. By using
the maximum likelihood estimation (MLE) method, they measured the parametric
production function, which is an important tool in micro-econometrics. Some detail
of econometric studies on the estimation problem of stochastic frontier functions
has been explained in Chapter 17 of Green (2003). The main purposes of these two
methods in operation research and econometrics are similar, but their traditional
approaches and mathematical techniques to solve the similar problems are quite
different.

In this paper, we develop a statistical data envelopment analysis (SDEA), which
seems to be new to operations research literature as well as econometrics and statis-
tical sciences. We first consider the basic statistical DEA model that the observed
data is the sum of an increasing concave function and a pon-positive random noise.
The random noise term can be interpreted as the inefficiency of inputs-output re-
lationships. The purpose of statistical data analysis is to estimate the unknown
function, called the efficiency frontier, nonparametrically based on the set of ob-
served data. The key idea of the present work is to use the statistical methods of
the regression analysis, and the statistical extreme value theory (SEVT) to estimate
the unknown envelop function. When the sample size is not large, we have found
that the estimation method based on the SEVT method may not be satisfactory
in some cases. As the first estimation method, we shall use an estimation method
based on the linear regression, which is quite simple and straightforward. However,
we find that it has some possible efficiency loss in estimation when the sample size
is large and it can be improved. Then, we shall introduce the second estimation
method based on the SEVT method. We shall show that the order of second esti-
mation method of unknown parameters is faster than the first estimation method
in some situations. We also discuss the case when we have measurement errors as
well as inefficiencies in noisy observed data sets.

The main purpose of this paper is to develop a new statistical approach to the
DEA problem and some theoretical results. We also report an empirical analysis of
the life insurance industry in Japan as an application. Since the number of data is
about 40, which is quite small as the DEA problem, we have applied the regression-
based method to this application. Since our approach is not along the traditional
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approach in operations science and management sciences, first we explain the basic
case, and then we generalize the simple formulation to more general cases.

The reminder of this paper is organized as follows. In Section 2, we discuss
the formulation of SDEA and introduce the first estimation method in the simple
case. In Section 3, we introduce the second estimation method for the case when
the sample size is large. In Section 4, we discuss the relation of our SDEA model
, the type-II extreme value distribution and the SEVT method. In Section 5, we
generalize the basic SDEA method when we have several explanatory variables. In
Section 6, we discuss the problem of measurement errors in the analysis of efficient
frontier. In Section 7, we report an empirical study of the SDEA method for the
life-insurance industry in Japan. Finally, in Section 8, we provide some concluding
remarks.

2 A New Approach of SDEA

2.1 Statistical Data Envelopment Analysis

We formulate our problem as the non-parametric estimation of a statistical DEA
model. Let the output level and input-level be Y and X, respectively, which take
non-negative values. We assume that the efficient frontier function h(·) is smooth
and twice-differentiable with h‘ > 0 and h‘′ < 0, and the input variable X is fixed
in this paper. (We usually consider the case when we only know that f(·) is a
concave function in applications.) Let also the random variable U representing the
inefficiency term from the (unknown) efficient frontier function, and we assume the
relation

Y = h(X) + U (U ≤ 0) .(2.1)

In the standard DEA, both X and Y take any real numbers, and in real applications
we only observed a finite number of data on X and Y . We use N as the sample size.

Let Yi (i = 1, · · · , N), Xi (i = 1, · · · , N) are the observed output and input
levels, which are non-negative, and hm(X) is an increasing concave piece-wise linear
frontier function of the input level X as

hm(x) = ak + bkx (x ∈ I
(m)
k ; k = 1, · · · ,m) ,(2.2)

where I
(m)
k = (w

(k)
1 , w

(k)
2 ] ( w

(k)
1 ≤ w

(k)
2 ), 0 ≤ w

(1)
1 < · · · < w

(m)
1 and 0 ≤ w

(1)
2 < · · · <

w
(m)
2 .

In this study, we restrict our formulation to the case when Xi is a bounded deter-
ministic variablIe and w

(1)
1 ≤ X1 ≤ X2 ≤ · · · ≤ XN ≤ w

(m)
2 . Because of concavity,

we impose the monotonicity restrictions on coefficients such that

0 ≤ a1 ≤ · · · ≤ am , b1 ≥ · · · ≥ bm ≥ 0 .(2.3)
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Let also Ui (i = 1, · · · , N) is a sequence of i.i.d. random variables, which take non-
positive values. As a typical case, Ui follows the negative exponential distribution
such that for some positive λ > 0,

F (u) = P (Ui ≤ u) = exp[λu] (u ≤ 0) .(2.4)

The basic statistical model is given by

Yi = hm(Xi) + Ui (i = 1, · · · , N) .(2.5)

The important feature of this representation is the restrictions that hm(Xi) is in
the class of non-decreasing piece-wise linear concave function and Ui takes only
non-positive real values. The efficient frontier function h(X), which is the main
interest of investigation, but it is unknown for researchers. This problem has been
well known as the DEA model in operations research and there have been numer-
ous applications. Also in econometrics, there has been some literature such as the
econometric estimation of production frontier. (See Green (2003), for instance.)

Given a finite number of data sets (Xi, Yi) (i = 1, · · · , N), it is only possible to
estimate the unknown function hm(x) when m = mN is less than N . We divide the

intervals I
(m)
k (k = 1, · · · ,m) such that

∪m
k=1 I

(m)
k = (w

(1)
1 , w

(m)
2 ] and we denote nk as

the number of data in I
(m)
k = (w

(k)
1 , w

(k)
2 ] with

m∑
k=1

nk ≥ N .(2.6)

We allow the case when
∑m

k=1 nk > N , which means data sets are overlapped in
intervals.
In the present study, we shall consider the case when the input variable X is fixed
(or there are several fixed input variables), and the bounds of intervals are known
in advance. However, for example, it may be possible to pick intervals for X ran-
domly. We conjecture that some efficient estimation methods for finite data would
be developed, which is beyond the scope of the present work.
When both nk (k = 1, · · · ,m) and m are large, it is possible to develop the asymp-
totic theory for the estimation methods. In the following, wel investigate the (con-
sistent) statistical estimation methods of the piece-wise linear function ĥm such that
as m → +∞ (and nk → +∞).

sup
x

|ĥm(x)− h(x)| p−→ 0 .(2.7)

It is because

sup
x

|ĥm(x)− h(x)| ≤ sup
x

|ĥm(x)− hm(x)|+ sup
x

|hm(x)− h(x)| p−→ 0 .

For a finite N , one way to estimate the smooth function h(x) in practice is to use
some spline functions based on the estimated ĥm(x) at m nodes.
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Figure 1: A typical situation : We estimated four tangent lines for the efficient
frontiers from simulated 100 data.

We illustrate a typical situation of the present problem as Figure 1. There are
100 firms with a common technology Y = X0.3 (X > 0) to produce an output Y and
one input X in an economy. Although there could be efficient firms in an industry
or a market, but most firms are inefficient and the inefficiency can be denoted as
U (U ≤ 0), where U is a (non-positive) continuous random variable. We generated a
set of random variables from the negative exponential distribution. Since we do not
know the exact form of the underlying technology f(X) = X0.3 except the fact that
Y (= f(X) +U) and f is non-negative and concave, and our task is to estimate the
unknown function f nonparametrically from a set of data (Xi, Yi) (i = 1, · · · , 100).
Then, we try to draw several lines locally by using a set of data around some value
at X, which are tangent to the true efficient technology curve at X. We have four
estimated tangent lines in Figure 1.

We will propose two non-parametric ways to solve the present statistical problem
in this study. In the k-th interval, we set n = nk (k = 1, · · · ,m) and m is fixed. We

consider the problem of estimating the tangent line of h(X) in I
(m)
k , and given any

X = x(> 0) such as

Yi = ak + bkXi + Ui (i = 1, · · · , n) .(2.8)

We sometimes use notation that a = ak, b = bk and ak + bkx ≥ h(x), Xi ∈ I
(m)
k =
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(w
(k)
1 , w

(k)
2 ] and ak and bk are unknown parameters whenever to make no confusion.

Then, we will consider the estimation problem a and b in the k-th interval I
(m)
k for

a positive integer k. Our proposal is to use the tangent function a+ bx to estimate
the unknown function h(x) at many points of x.

2.2 The first estimation method

When the sample size of data is not large, we develop the first estimation method,
which is based on the linear regression model in each interval. We should note that
the first estimation method can be improved substantially when the sample size of
data is large, however, as we shall discuss in Section 3.

In the k-th interval, we use the regression slope coefficient

b̂LSk =

∑n
i=1(Yi − Ȳ )(Xi − X̄)∑n

i=1(Xi − X̄)2
(2.9)

and the maximum of intercept coefficient

âLSk = min
i=1,···,n

{a|a+ b̂kXi ≥ Yi} ,(2.10)

where n = nk, Ȳ = (1/n)
∑n

i=1 Yi and X̄ = (1/n)
∑n

i=1Xi.

Here, we need the monotonicity restrictions on the estimated coefficients and impose
the conditions with k (k = 1, · · · ,m) such that

0 ≤ âLS1 ≤ · · · ≤ âLSm , b̂LS1 ≥ · · · ≥ b̂LSm ≥ 0 .

When the estimated coefficients in an interval do not satisfy the restrictions, we
simply disregard the estimated coefficients and the information in the associated
intervals. We have the following asymptotic result.

Theorem 1 : Assume that Ui (≤ 0) is a sequence of i.i.d. random variables with
the variance V[Ui] = σ2

u < +∞, the density f(u) is bounded and smooth at u = 0,
and Xi are bounded.
(i) Then, in each interval I

(m)
k , as n (= nk) → ∞[

âLSk − ak
b̂LSk − bk

]
p−→ 0 .(2.11)

(ii) As n (= nk) → ∞
√
n(b̂LSk − bk)

w−→ N(0,
σ2
u

Mx

) ,(2.12)

where we assume Mx = limn→∞(
1
n
)
∑n

i=1(Xi − X̄)2 is a positive constant.
(iii) For any 0 < α < 1/2,

nα(âLSk − ak)
p−→ 0 .(2.13)
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as n → ∞

Proof of Theorem 1 : We use the standard arguments of linear regression in the
first part. By using (2.8) and (2.9), we write

√
n(b̂LSk − bk) =

1√
n

∑n
j=1(Xj − X̄)(Uj − Ū)
1
n

∑n
j=1(Xj − X̄)2

.(2.14)

The denominator converges to Mx and the numerator converges to N(0, σ2
uMx) in

distribution by applying the central limit theorem (CLT).
Next, we use the relation

âLSk − ak = min
i=1,···,n

{α|Yi ≤ a+ b̂kXi} − ak

= max
i=1,···,n

{Yi − b̂kXi} − ak

= max
i=1,···,n

{Ui + (bk − b̂k)Xi} .

We use the assumption that Xi is bounded (|Xi| ≤ X∗ for some X∗) and 0 < α <
1/2. Then we can take β such that 0 < α < β < 1/2. For 0 < α < 1/2,

|nα(bk − b̂k)Xi| ≤ |n
1
2 (bk − b̂k)max{Xi}|[

nα

√
n
]

p→ 0

as n → ∞.
Then for any sequences zn = x/nα and x < 0,

P ( max
i=1,···,n

(Ui +
ϵ

nβ
) ≤ zn) =

n∏
i=1

P (Ui ≤
x

nα
− ϵ

nβ
)

= exp{
n∑

i=1

logF (
x

nα
− ϵ

nβ
)} ,

where F is the distribution function.
Because Ui is a sequence of i.i.d. random variables with the density f (F is smooth
at zero with F (0) = 1), the right-hand-side becomes approximately

exp{n log[1 + f(0)[
x

nα
]} ∼ exp{f(0) x

nα−1} → 0

and P (nα[âLSk −ak] ≤ x) → 0 for any x < 0 as n → ∞. By using a similar argument
to P (maxi=1,···,n(Ui − ϵ

nβ ) ≤ zn), we have the result.
(Q.E.D.)

We notice that the order of convergence in b̂k is
√
n while the order of convergence

in âk may be nα and α ≥ 1/2 because of the last part of Theorem 1. It suggests
that we may improve the order of convergence in the estimation of slope b̂k. We
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Figure 2: An estimated efficient frontier : For simulated data, we have used the first
estimation method to estimate the piece-wise tangent lines.

shall show that the convergence rate is n in the second estimation method.

As a numerical illustration of SDEA by using the first estimation method, we
show the estimated efficient frontier in Figure 2 based on some simulated data. Al-
though the true efficient frontier function is continuous and concave in this example,
the observed data look non-concave in several intervals because we have a finite num-
ber of observations as well as the presence of negative noises. The first estimation
method work well because we have used the piece-wise linear efficient frontier func-
tions and we took m = 5 in this example. When there are very many observations,
the 2nd estimation in the next section may improve the first method and it may
have some statistical optimality. However, we need many observations in any fixed
interval in the SEVT-based method. (See Section 3.) When the observed data is
not large, however, the first estimation method usually gives reasonable solutions
for practical purpose in our simulations.
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3 The Second Approach of SDEA when the sam-

ple size is large

It is possible to improve the first estimation method when the sample size is large.
Our second estimation method is based on the statistical extreme value theory
(SEVT). The SEVT method has been developed as a branch of statistics, whose
focus is on the extremal and rare events such as natural and financial disasters.
It has been related to a need to analyze extremal phenomena beyond the stan-
dard statistics based on the normal distribution with moments. See Embrechts, P.,
Klüppelberg, C.　 and Mikosch (1997) for some details. There are three types of
extreme value distributions in SEVT, and we shall use the second (Wiebul) type of
extreme distribution because there is an upper bound of observed data in the SDEA
models, which is the main target of our statistical analysis.

In this section, we first fix a k (k = 1, · · · ,m and m ≥ 3) and we order the data

0 ≤ w
(1)
1 ≤ X1 ≤ X2 ≤ · · · ≤ XN ≤ w

(m)
2 with I

(m)
k = (w

(k)
1 , w

(k)
2 ] ( w

(k)
1 ≤ w

(k)
2 ),

0 ≤ w
(1)
1 < · · · < w

(m)
1 and 0 ≤ w

(1)
2 < · · · < w

(m)
2 .

We take three consective intervals Ij = I
(m)
k (j) j = 1, 2, 3 and n(j) = nk(j) with

n = nk = n(1) + n(2) + n(3) (n(2) ≥ 0) are the numbers of data in each interval.
Let X̄L = (1/n(1))

∑
Xi∈I1 Xi and X̄M = (1/n(3))

∑
Xi∈I3 Xi and we assume that

0 < X̄L < X̄M . Let aslo YL(1) = maxXi∈I1 Yi and YM(3) = maxXi∈I3 Yi.
Then, we define the second estimation method, which is based on the SEVT, by

b̂k =
YM(3)− YM(1)

X̄M − X̄L

(3.15)

and
âk = min

Xi∈I1∪I2∪I3
{a|a+ b̂kXi ≥ Yi} .(3.16)

We impose the monotonicity restrictions on the estimated coefficients in I
(m)
k (k =

1, · · · ,m) such that

0 ≤ â1 ≤ · · · ≤ âm , b̂1 ≥ · · · ≥ b̂m ≥ 0 .(3.17)

When the estimated coefficients in any interval do not satisfy the necessary restric-
tions, we simply disregard the estimated coefficients and the associated intervals.

To develop the asymptotic theory, we consider the next condition.
Assume that Xi are bounded and 0 < X̄L < X̄M . For any positive numbers c1 and
c3 there exists δ (> 0) which satisfies

(Condition A) |Xi−X̄L| ≤
c1
nδ
1

for any Xi in I1 , |Xi−X̄M | ≤ c3
nδ
3

for any Xi in I3 .
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This sufficient condition implies that in two intervals we have a sufficient number of
data points in intervals around their means.

For the asymptotic properties of the resulting estimation method, we have the
following result on the consistency of âk and b̂k.

Theorem 2 : Assume that Ui (≤ 0) is a sequence of i.i.d. and the ditribution
function F has the density f(u) is bounded and smooth at u = 0. Also we assume
that Xi are bounded Xi are bounded, and 0 < X̄L < X̄M . In (2.8), we consider the
case when n −→ ∞ (n(1), n(3) → +∞). Then, under Condition A, as n → ∞[

âk − ak
b̂k − bk

]
p−→ 0 .(3.18)

Proof of Theorem 2 : For zn and Xi ∈ I1,

P (max
Xi∈I1

Yi ≤ zn) =
n(1)∏
i=1

P (Yi ≤ zn)(3.19)

=
n(1)∏
i=1

P (Yi − (ak + bkXi) ≤ zn − (ak + bkXi))

=
n(1)∏
i=1

P (Ui ≤ zn − (ak + bkXi)) .

Since δ > 0, we take α such that 0 < α < δ. Then, by taking zn = ak + bkX̄l +
z/n(1)α (z < 0), The probability can be written as

n(1)∏
i=1

F

(
[

z

n(1)α
+ bk(X̄L −Xi)] ∧ 0

)
.(3.20)

Under Condition A, for δ > α > 0 and any z < 0, the dominant factor in the
right-hand-side becomes

exp[n(1) logF

(
z

n(1)α

)
] → 0

as n(1) → ∞.
Hence

max
Xi∈I1

Yi − (ak + bkX̄L)
p−→ 0 .(3.21)

Then, by using the same argument for I3 and X̄M ,

max
Xi∈I1

Yi − (ak + bkX̄L)
p−→ 0 ,max

Xi∈I3
Yi − (ak + bkX̄M)

p−→ 0

10



and
[max
Xi∈I2

Yi −max
i∈I1

Yi]− bk[X̄M − X̄L]
p−→ 0 .(3.22)

Hence, we have
b̂k − bk

p−→ 0 .(3.23)

On the parameter a, we have

max
Xi∈I1∪I2∪I3

[Yi − b̂kXi] = max
Xi∈I1∪I2∪I3

[ak + bkXi + Ui − b̂kXi](3.24)

= ak + max
Xi∈I1∪I2∪I3

[Ui + (bk − b̂k)Xi]

and

P ( max
Xi∈I1∪I2∪I3

[Yi − b̂kXi]− ak ≤ zn) = P ( max
Xi∈I1∪I2∪I3

[Ui + (bk − b̂k)Xi] ≤ zn) .

Since bk − b̂k
p→ 0 and Xi are bounded, we can take ϵn = K/n1−α (α > 0) such that

P (|(bk − b̂k)Xi| ≤ ϵn) → 1 for a constant K. We take z∗n = zn + ϵn (or zn = z∗n − ϵn)
and apply the arguments of the last part of the proof of Theorem 1 to find

âk − ak
p−→ 0 .(3.25)

(Q.E.D.)

By constructing the estimated efficiency frontier as

ĥm(x) = âk + b̂kx (any x ∈ I
(m)
k ) ,(3.26)

we have a consistent estimator of the piece-wise function h(mx), It is because

ĥm(x)− hm(x) = (âk − ak) + (b̂k − bk)x
p−→ 0.

For the asymptotic distribution of the estimated coefficients, we need a strong con-
dition with Condition A. The condition implies that we have a sufficient number
of data points in two intervals around their means. The asymptotic property of
estimator of unknown coefficients depends on the value of δ in Condition A.

Theorem 3 : Assume that Ui (≤ 0) is a sequence of i.i.d. and the distribution
function F has the density f(u), which is bounded and smooth at u = 0. Also we
assume that Xi are bounded Xi are bounded, and 0 < X̄L < X̄M . In (2.8), we
consider the case when n −→ ∞ (n(1), n(3) → +∞).
(i) When 0 < δ ≤ 1 under Condition A, for any 0 < α < δ

nα(b̂k − bk)
p−→ 0 .(3.27)

11



as n → ∞.
(ii) When δ > 1 under Condition A, we have the asymptotic distribution of b̂k as
n → ∞,

n(b̂k − bk)
w−→ Zb = λ3Z3 − λ1Z1 ,(3.28)

where Zi (i = 1, 3) follows G(λ) = eλzi (zi ≤ 0; i = 1, 3) and λ = f(0). The
distribution of Zb follows Gb(z) = [λ3/(λ1+λ3) exp[

λ
λ3
z] (z < 0), Gb(z) = [−λ1/(λ1+

λ3)[1 − exp[λ3

λ1
z] (z ≥ 0), where λ1 = [1/(X̄M − X̄L)][limn,n(1)→∞

n
n(1)

] and λ3 =

[1/(X̄M − X̄L)][limn,n(3)→∞
n

n(3)
] , provided that they converge to finite values for

λ1 > 0 and λ3 > 0.
(iii) For any 0 < α < min{δ, 1},

nα(âk − ak)
p−→ 0 .(3.29)

as n → ∞

Proof of Theorem 3 : (i) We apply the proof of Theorem 2 for nα(b̂k−bk). For 0 <

α < δ ≤ 1, we take zn = ak + bk + z/nα (α < 0), then nα[maxI1 Yi− (ak + bkX̄L]
p→ 0

and then, we have nα(b̂k − bk)
p→ 0.

(ii) Consider the case when δ > 1 under Condition A. For the asymptotic distribution
of b̂k, let Z1n = n(1)[maxI1 Yi−(ak+bkX̄L)] and Z3n = n(3)[maxI3 Yi−(ak+bkX̄M)].
Then

n(b̂k − bk) =
n

X̄M − X̄L

[
Z3n

n(3)
− Z1n

n(1)
] = λ3nZ3n − λ1nZ1n ,(3.30)

where λ1n = n
n(1)(X̄M−X̄L)

and λ3n = n
n(3)(X̄M−X̄L)

.

In the proof of Theorem 2, we set α = 1. Then,
exp[n(1) logF (z/n(1)]] → exp[f(0)z] (z < 0) because F (0) = 1 and F is smooth at
zero with density f(z). Since Z1n and Z3n are independent, the joint asymptotic
distribution of Z1n and Z3n is given by

G(z1, z3) = exp[λ(z1 + z3)] (z1 ≤ 0, z3 ≤ 0) ,

where λ1 = limn→∞ λ1n and λ3 = limn→∞ λ3n, We need some care on the asymptotic
distribution of b̂k because Z1 ≤ 0 and Z3 ≤ 0 and Z = λ3Z3−λ1Z1 can take positive
and negative values. When Z = λ3Z3 − λ1Z1 ≥ 0, {Z ≤ z} and Z3 ≤ 0 imply
(λ3 − z)/λ1 ≤ Z1 ≤ (λ3/λ1)Z3. When Z = λ3Z3 − λ1Z1 ≤ 0, {Z ≤ z} and Z1 ≤ 0
imply Z3 ≤ (λ1Z1 + z)/λ3. Hence we need to consider two cases, separately.
For z < 0 is given by

P (Z ≤ z) = P (Z3 −
λ1

λ3

Z1 ≤
1

λ3

z)

=
∫ 0

−∞

[∫ (λ1z1+z)/λ3

−∞
λ2 expλ(z1 + z3)dz3

]
dz1

=
λ3

λ1 + λ3

exp[
λ

λ3

z] .
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For z ≥ 0, we have an evaluation as

P (Z ≤ z) =
∫ 0

−∞

[∫ (λ3/λ1)z3

(λ3z3−z)/λ1

λ2 expλ(z1 + z3)dz1

]
dz3

=
∫ 0

−∞
λ exp(λz3)[exp(λ(λ3/λ1)z3)− exp(λ((λ3z3 − z)/λ1)z3)]dz3

=
λ1

λ1 + λ3

[1− exp(− λ

λ1

z)] .

(iii) For the asymptotic property of âk − ak, we use the same arguments as the last
part of the proof of Theorem 1. Since n(b̂k − bk) has a limiting distribution, for
0 < α < 1 and any negative value z, P (nα(âk − ak) ≤ z) → 0 as n → ∞, provided
that both n(1)/n and n(3)/n converge to positive constants. Then, we have the
result in Theorem 3.
(Q.E.D.)

When n(1) = n(3), the distribution of Zb is the double exponential distribution. It
is important to notice that the order of convergence in the asymptotic distribution
of b̂k is n instead of

√
n. It is due to the fact that we use the estimation method

based on the maximum value in the intervals.

The asymptotic distribution of â is currently not available. However, we may impose
an additional condition that there exists a small positive real number ϵ (> 0) such
that for any z < 0,

(Condition B)|P (n[ max
Xi∈I1∪I2∪I3

(Yi−b̂Xi)−ak] ≤ z)−P (n[ max
Xi∈I1∪I3

(Yi−b̂Xi)−ak] ≤ z)| < ϵ .

Since we are estimating the piece-wise linear functions, this may not be very restric-
tive. Some further analysis would be needed.
Then, when δ > 1 with Condition B, we have

P (n[ max
Xi∈I1∪I3

(Yi − b̂kXi)− ak] ≤ z) → H(z) ,(3.31)

where H(z) = d1 exp[e1λz] for z ≤ 0 and H(z) = (1− d1) exp[e2λz] for z ≤ 0, where
d1 = limn→∞ n(2)X̄M/[n(2)X̄M +n(1)X̄L], e1 = limn→∞ n(1)[X̄M −X̄L]/[nX̄M ], and
e2 = limn→∞ n(2)[X̄M − X̄L]/[nX̄L], provided that these quantities are well defined
and X̄M > X̄L.
The derivation of H(z) is similar to the first part of the proof of Theorem 3. By
using

P (n[ max
Xi∈I1∪I3

(Yi − b̂kXi)− ak] ≤ z)

= P (max{n[max
Xi∈I1

(Ui − (bk − b̂k)Xi, n[max
Xi∈I3

(Ui − (bk − b̂k)Xi} ≤ z) ,

13



under Condition B, it is asymptotically equivalent to

P (max{n[max
Xi∈I1

(Ui − (bk − b̂k)X̄L, n[max
Xi∈I3

(Ui − (bk − b̂k)X̄M} ≤ z)

∼ P (max{c11Z1 + c12Z2, c21Z1 + c22Z2} ≤ z)

= P (c11Z1 + c12Z2 ≤ z) ,

because c11Z1 + c12Z2 = c21Z1 + c22Z2, where c11 = n/n(1) + λ1X̄L, c12 = −λ2XL,
c21 = λ1X̄M and c22 = n/n(2)− λ2X̄M .
Let Z∗a = c11Z1 + c12Z2 and we shall derive its distribution function as follows.
For z ≤ 0, Z1 ≤ (z − c12z2)/c11 ≤ 0 (c11 > 0 > c12),

H(z) =
∫ 0

−∞

∫ (z−c12z2)/c11

−∞
λ2 exp[λ(z1 + z2)]dz1dz2

=
∫ 0

−∞
λ exp[λz2 expλ[(z − c12z2)/c11]dz2

=
c11

c11 − c12
exp[

λ

c11
z] .

For z > 0, z1 ≤ 0 and (c11z1 − z)/(−c12) ≤ Z2 ≤ 0, and

H(z) =
∫ 0

−∞

∫ 0

(c11z1−z)/(−c12)
λ2 exp[λ(z1 + z2)]dz2dz1

=
∫ 0

−∞
λ exp[λz1][1− expλ(c11z1 − z)/(−c12)]dz1

= 1− λ exp[
λ

c12
z]
∫ 0

−∞
exp[λ(1− c11/c12)z1]dz1

= 1− −c12
c11 − c12

exp[
λ

c12
z] .

The distribution function H(z) could be used to approximate the limiting distribu-
tion of â in practice. Other methods including resampling could be used, but it is
beyond the scope of the present study.
For the piece-wise linear function hm(x), we set X = x, and when the limiting ran-
dom variable of n(â − a) is given by Za, we have some asymptotic representation.

Given x = X̄, ĥm(x) − hm(x)
p−→ 0 , and the limiting random variable can be

represented by

n[ĥm(x)− hm(x)]
w−→ Zh = Za + (λ1Z1 − λ2Z2)x

and Za could be approximated by Z∗a .
The asymptotic distribution depends on the unknown parameter λ (> 0). It may be

natural to use the residuals Ûi = Yi − âk − b̂kXi in I
(m)
k to estimate λ by (−1)λ̂−1 =

(1/n)
∑n

i=1 Ûi. Then the confidence interval for λ can be constructed.
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4 The Case of Repeated Observations

In this section we discuss the relation between our method in Section 3 and the
(classical) statistical extreme value theory (SEVT).
We assume that the inefficiency term is a sequence of i.i.d. random variables with the
unknown continuous distribution F . We consider the case when we have repeated
observations with a fixed X. We denote Xk (k = 1, · · · ,m) and

Ykj = bkXk + Ukj (k = 1, · · · ,m; j = 1, · · · , nk)(4.32)

where Ukj (≤ 0) is a sequence of i.i.d. random variables with the distribution
function F and the zero intercept coefficient.

We consider the situation that given Xk = x, there are many observations in
each intervals and nk → +∞ under the assumption that F is smooth at zero. We
use

P ( max
j=1,···,nk

Ykj ≤ zn) =
nk∏
j=1

P (Ukj ≤ zn − bkXk)

= exp{
nk∑
j=1

log[1− 1

nk

nkF̄ (zn − bkXk ∧ 0)]}

∼ exp{− 1

nk

nk∑
j=1

[nkF̄ (zn − bkXk ∧ 0)]]}

as nk → ∞ when we take zn = z/nk + bkXk and F̄ (x) = 1 − F (x). We note that
F̄ (x) is the right-tail of distribution because Ukj are non-positive random variables.
Then, by using the Taylor expansion of F̄ (x) around x = 0 (F̄ (0) = 0), as nk → ∞
(k = 1, · · · ,m)

P (nk[ max
j=1,···,nk

Ykj − bkXk] ≤ z) −→ exp[f(0)z] (z ≤ 0) ,(4.33)

provided that f(0) is bounded.
Since the limiting distribution is the negative-exponential distribution F ∗(u) =
exp[λu] (u ≤ 0) with λ (> 0), we have f(0) = λ.

More generally, it is possible to consider the case when the density function f(x) of
the inefficiency terms Ukj in (4.32) diverges at x = 0. A typical case is the pareto-
type distribution when there is finite right endpoint, which has the density around
zero f(x) ∼ C(−x)α−1 (x < 0, α > 0) for some C. One class of distributions has the
form that for y = −x (> 0)

F̄ (−y−1) = y−αL(y) ,(4.34)

where L(y) is a slowly varying function and α > 0. (A positive function L on
(0,∞) is slowly varying at ∞ if limy→∞[L(ty)/L(y)] = 1 for t > 0. See Page 564 of
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Embrechts et al. (1997).) Then, Theorem 3.3.12 of Embrechts, P., Klüppelberg, C.
and Mikosch (1997) implies that we can choose c(nk)

−1 = −F←(1− n−1k ) such that
as nk → ∞

P (c(nk)[ max
j=1,···,nk

Ykj − bkXk] ≤ z) −→ exp[−(−z)α] (z ≤ 0) ,(4.35)

where α > 0 and F←(t) = inf{x|F (x) ≥ t} for 0 < t < 1. This formulation is
standard in the statistical extreme value theory (SEVT) and it has been called the
maximum domain of attraction demain of the second (Weibull) type of distribution.
This asymptotic distribution is known as the 2nd-type (Weibull) extreme value
distribution. In this case, however, we need to estimate the scale parameter α in
the general case, which may not be a trivial task.

In the SDEA problem, it may be possible to consider the general case of (4.34)
with α (> 0) for noise or inefficiency term. However, we did not pursue this line
generality in the present work because the assumption of the boundedness of density
function at z = 0 may be appropriate in most applications. We usually use the DEA
method to analyze the effieincy frontier function when there are many inefficient
firms and a small number of firms is near to the efficient frontier in a particular
industry, for instance.

If we furthr have an intercept term as Ykj = ak + bkXk + Ukj (k = 1, · · · ,m; j =
1, · · · , nk) and a is the intercept term, we denote Vkj = Ukj − E[Ukj] provided that
E[Ukj] exists. Then, we can rewrite Ykj = (ak+γ)+bkXk+Vkj with E[Vkj] = 0. For
each k, the statistical model becomes linear regression and the estimation of γ and
(ak, bk) (k = 1, · · · ,m) is possible, but the order of convergence in the regression-
based estimation method may be

√
n.

There are some situations when there are many observation in the SDEA prob-
lem, but they are not necessarily the same as the statistical model with repeated
observations discussed in this section. If we can take cn > 0 such that we have many
observations in the region [x− cn, x+ cn] for some x for instance, it is reasonable to
utilize the 2nd estimation method discussed in Section 3.

5 A General Case with Several Explanatory Vari-

ables

We consider a generalization of Sections 2 and 3, and let p be the number of ex-
planatory variables. We set p = 2 although it is straightforward to consider more
general cases with some notational as well as numerical complications.

For j = 1, 2, let I
(mj)
kj

= (w
(kj)
j1 , w

(kj)
j2 ] ( w

(kj)
j1 ≤ w

(kj)
j2 ), 0 ≤ w

(1)
j1 < · · · < w

(mj)
j1 and

0 ≤ w
(1)
j2 < · · · < w

(mj)
j2 . For k = (k1, k2)

′
, m = (m1,m2)

′
and I

mj

kj
= (w

kj
j1 , w

kj
j2 ] (j =

1, 2), we set the (k1, k2)−th region by I
(m)
k = I

(m1)
k1

× I
(m2)
k2

. (The number of data is
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denoted by n(p, q) = nk1,k2(p, q).) We estimate the hyperplanes of the form

hm(X) = ak + b1kX1 + b2kX2(5.36)

in X = (X1, X2)
′ ∈ ∪k I

(m)
k with the concavity restrictions.

Let vectors x = (x1, x2)
′
, x(i) = (x1(i), x2(i))

′
and x(j) = (x1(j), x2(j))

′
(i ̸= j)

be in
∪

k I
(m)
k and let non-negative scalars λi and λj (i ̸= j). Then the concavity

restrictions imply that

hm(x) ≥ λihm(x(i)) + λjhm(x(j))(5.37)

for any x = λix(i) + λjx(j) and λi + λj = 1.
It is straightforward to check these conditions numerically at every estimation, but
there may be some complications in their numerical evaluations. As an example, we
take i = 1, j = 2 and explain the following steps.
(Step 1) : First, we estimate a hyperplane h1(X1, X2) = a(1) + b1(1)X1 + b2(1)X2

by using all data with the restrictions a(1) ≥ 0 , b1(1) ≥ 0 , b2(1) ≥ 0 in the region
I(1) = I1(1)× I2(1) (X1 ∈ I1(1) and X2 ∈ I2(1)).
(Step 2) : Next, we take I(1) and and some different intervals Ik (k = 2, · · · ,m)
near to I(1) Then, we estimate hyperplanes h1(X1, X2) = a(2) + b1(2)X1 + b2(2)X2

in each regions locally and check the concavity restrictions and non-negativity of
coefficients. If they were not satisfied, we disregard the estimation results. If they
were satisfied, we use the estimation result and use the piece-wise linear functions.
(Step 3) : We repeat the same procedure. Since the number of data is finite, we
will stop this procedure eventually. (In our experiments, we have taken m such that
m1 and m2 are less than 0.1× (sample size).)

5.1 The first estimation method of coefficients

We extend the estimation of unknown coefficients with one explanatory variable to
the one with several variables. We illustrate this problem and consider the case of
two explanatory variables. We first fix k1 and k2, and we take the number of data
as nk1,k2(p, q) (p, q = 1, 2). We apply the least squares estimators of the coefficient
vector and construct the intercept coefficient by adjusting the level of output. Then
we continue to construct coefficients such that they satisfy the monotonicity restric-
tions.
For the first regression-based method of coefficients in Section 2, it is straightforward
to extend the method in Section 2 to the case when there are several explanatory
variables. The coefficients bjk (j = 1, · · · , p; k = 1, · · · ,m) can be estimated by the
linear regression equation

b̂LS
k = [

n∑
i=1

XiX
‘
i]
−1[

n∑
i=1

XiYi] ,(5.38)
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where Xi = (Xji) is a p× 1 vector of input variables and Yi is the output variable.
The estimator of the intercept coefficient ak is given by

âLSk = min
i=1,···,n

{a|a+ b̂LSk Xi ≥ Yi} .(5.39)

The order of the asymptotic distribution of bjk and ak (j = 1, · · · , p; k = 1, · · · ,m)
are

√
n and n, respectively. It is because Theorem 1 and its proof can be extended

directly to this case.

It may be straightforward to extend our analysis in this section to the general case
when p ≥ 2 such that for k = 1, · · · ,m,

Yi = ak +
p∑

j=1

bjkXji + Ui (i = 1, · · · , n) ,(5.40)

where Ui ≤ 0.

5.2 The second estimation method of coefficients

We also extend the 2nd estimation method with the concavity restrictions based on
the SEVT method explained in Section 3. As for an illustration, we take the case
of p = 2, and from I

(m)
k , k = 1, · · · ,m we take conswctive 9 regions in the form of

I(i, j) = I1(i)× I2(j) = (w1i, w1,i+1]× (w2j, w2,j+1] (i, j = 1, 2, 3)

and n(i, j) denotes the number of data in I(i, j). Since there are many intervals, in
practice we can take empty regions as n(i, j) = 0 (i or j=2) in practice. We take the
means in each regions as X1(i, j) and X2(i, j) (i, j = 1, 2, 3).

For estimation, we take a combination of j and k and set
X1(j, k) = (1/n(j, k))

∑
Xi∈I(j.k)X1i

(j, k = 1, 3) and
X2(j, k) = (1/n(j, k))

∑
Xi∈I(j.k)X2i

(j, k = 1, 3),

where n(j, k) are the number of observations in I
(m)
k (j, k) (j, k = 1, 2, 3). The corre-

sponding maximum output value in each regions as YM(j, k) = maxXi∈I(j,k) Yi (j, k =
1, 3). Then, the following derivations are the direct extensions of Section 3. By using
the assumption of smooth distribution function around zero, we first use the relation

P (max
I(3,1)

Yi ≤ zn) = P (max
I(3,1)

[Ui + a+ b1X1i + b2X2i] ≤ zn)

=
n(3,1)∏
i=1

P (Ui + a+ b1X1i + b2X2i ≤ zn) .

Then, by using the same arguments in section 3, we assume that for any positive
number c there exists δ (> 0) such that the sequences Xi in I

(m)
k satisfy

(Condition A∗) ∥Xi − X̄(i, j)∥ ≤ c

nδ
for any Xi in I(i, j) (i, j = 1 or 3) ,
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Then, we have

max
I(3,1)

Yi − [a+ b1X1(3, 1) + b2X2(3, 1)]
p−→ 0 .

Similarly, we find that maxI(1,1) Yi−[a+b1X1(1, 1)+b2X2(1, 1)]
p−→ 0 and maxI(1,3) Yi−

[a+ b1X1(1, 3) + b2X2(1, 3)]
p−→ 0 .

By using the above relations,

[YM(3, 1)− YM(1, 1)]− b1[X1(3, 1)−X1(1, 1)]− b2[X2(3, 1)−X2(1, 1)]
p−→ 0

and

[YM(1, 3)− YM(1, 1)]− b1[X1(1, 3)−X1(1, 1)]− b2[X2(1, 3)−X2(1, 1)]
p−→ 0 .

We define the estimator (b̂1, b̂2) of slope coefficients by[
YM(3, 1)− YM(1, 1)
YM(1, 3)− YM(1, 1)

]
=

[
X1(3, 1)−X1(1, 1) X2(3, 1)−X2(1, 1)
X1(1, 3)−X1(1, 1) X2(1, 3)−X2(1, 1)

] [
b̂1
b̂2

]
.

The estimator â of intercept coefficient is defined by

â = min
Xi∈

∪
j,k=1,3

I(j,k)
{a|a+ b̂1X1i + b̂2X2i ≥ Yi} .(5.41)

Then, under the assumption that there exists δ (> 0) with Condition A∗, we find

that [
YM(3, 1)− YM(1, 1)
YM(1, 3)− YM(1, 1)

]
−
[
X1(3, 1)−X1(1, 1) X2(3, 1)−X2(1, 1)
X1(1, 3)−X1(1, 1) X2(1, 3)−X2(1, 1)

] [
b̂1 − b1
b̂2 − b2

]
p−→ 0 .

If we further assume that

rank

 1 X1(3, 1) X2(3, 1)
1 X1(1, 3) X2(1, 3)
1 X1(1, 1) X2(1, 1)

 = 3(5.42)

for instance, then, b̂1 − b1
p−→ 0 and b̂2 − b2

p−→ 0 .
Let Zn(3, 1) = n(3, 1)[maxI(3,1) Yi − (a+ b1X1(3, 1) + b2X2(3, 1))],
Zn(1, 3) = n(1, 3)[maxI(1,3) Yi − (a+ b1X1(1, 3) + b2X2(1, 3))],
and Zn(1, 1) = n(1, 1)[maxI(1,1) Yi − (a+ b1X1(1, 1) + b2X2(1, 1))].
Then, under the assumption that there exists δ (> 1) with Condition A∗, we have
the limiting exponential random variables Z(3, 1), Z(1, 3), and Z(1, 1) with the joint
distribution

G(z31, z13, z11) = exp[λ(z31 + z13 + z11)] (z31 ≤ 0, z13 ≤ 0, z11 ≤ 0) .
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Then, the asymptotic distribution of n[b̂1 − b1, b̂2 − b2] is the weighted average of
exponential distribution in the expression

Zb =

[
X1(3, 1)−X1(1, 1) X2(3, 1)−X2(1, 1)
X1(1, 3)−X1(1, 1) X2(1, 3)−X2(1, 1)

]−1
[
λ(3, 1) 0 −λ(1, 1)

0 λ(1, 3) −λ(1.1)

]  Z(3, 1)
Z(1, 3)
Z(1, 1)

 ,

where λ(3, 1) = limn→∞ n/n(3, 1), λ(1, 3) = limn→∞ n/n(1, 3), and
λ(1, 3) = limn→∞ n/n(1, 1) as n, n(3, 1), n(1, 3), n(1, 1) → ∞.

Under the same setting with x = X̄, ĥm(x) − hm(x)
p−→ 0 , and the asymptotic

distribution of the estimated hyper-planes is given by

n[ĥm(x)− hm(x)]
p−→ Zh = Za + Z‘

bx ,(5.43)

where x = (x1, x2)
‘.

This expression is a direct generalization to the cases when p ≥ 2.

When the sample size is not large while the number of explanatory variables p is
greater than 1, the number of data in each cell may be small. Then the estimation
procedure may not be easily used. To avoid this problem, one may use a different
procedure to use multi-dimension cells. To illustrate an alternative method, we
use the case when p = 2, for instance, and we denote each cell as I(j, k) (j, k =
1, 2, 3). We also use the notations such that for j, k = 1, 2, 3,

∪
k I(j, k) = I(j, ·) and∪

j I(j, k) = I(·, k).
To cope with this problem, first, as we have mentioned, we can take null regions
I(i, j) when i or j is 2. Second, we use the relation

P ( max∪
k
I(3,k)

Yi ≤ zn) = P ( max∪
k
I(3,k)

[Ui + a+ b1X1i + b2X2i] ≤ zn) .

Then we can develop the similar evaluation except the fact that the resulting limit
random variables Zn(j, · · ·) and Zn(·, k) (j, k = 1, 3) are correlated even when n →
∞. The limiting distributions of estimators of coefficients can be expressed by the
limiting joint random variables Z(j, · · ·) and Z(·, k) (j, k = 1, 2), which follow

G(zj,·, z·,k) = exp{λ
∑
j,k

[zj,· ∧ z·,k]} (j, k = 1, 3),(5.44)

where zj,·,· ≤ 0, z·,k,· ≤ 0, λ(j, k) ∼ n/n(j, k).

Then, the asymptotic distribution of n[b̂1 − b1, b̂2 − b2] is the weighted average of
exponential distribution in the expression of

Z∗b =

[
X1(3, ·)−X1(1, ·) X2(3, ·)−X2(1, ·)
X1(·, 3)−X1(·, 1) X2(·, 3)−X2(·, 1)

]−1
(5.45)
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×
[
λ(3, ·) −λ(1, ·) 0 0

0 0 λ(·, 3) −λ(·, 1)

] 
Z(3, ·)
Z(1, ·)
Z(·, 3)
Z(·, 1)

 .

This representation can be extended straightforwardly to the cases when p ≥ 3.
The detail of this procedure is currently investigation, but it seems that we need a
simulation-based evaluation of the limiting distribution.

6 Efficient Frontier and Measurement Errors

There are cases when we should not ignore the measurement errors in inputs and
outputs in the SDEA problem. Let Vi be the measurement errors for the i-th ob-
servation. First, when Vi < 0, it may not be possible to distinguish it from the
inefficiency term, which does not take any positive value. Second, we consider the
case when Vi ≥ 0. A typical case would be Vi = cf(Xi)

∗, where f(Xi)
∗ is the hidden

efficient frontier and c is a non-negative measurement error rate. Then we have the
statistical model (2.1) as Yi = f(Xi) + Ui , where

f(Xi) = f(Xi)
∗(1 + c) ,(6.46)

Then, it may be reasonable to to estimate the frontier function without measure-
ment errors by f̂(Xi)

∗ = f̂(Xi)/(1 + c). There can be some examples of reporting
inaccurate numbers and accounting misconducts as typical examples of positive
measurement errors. In such cases, their roles could not be ignorable.

However, when we have measurement-errors in the SDEA problem, there is an al-
ternative approach to treat them as outliers. One empirical example will be reported
in the next section.

7 An Empirical Example : Life-Insurance Indus-

try in Japan

As an empirical example, we have applied the SDEA method in the previous sec-
tions to the accounting data sets on the life-insurance industry in Japan, which
are public data during 2017-2021 fiscal years in “Seimei-Hoken-Jigyou Gaikyou”
(Seimei-Hoken-Kyokai (2021)).

We have used the data as (1) works：office workers, (2) capital：total shareholders’
equity, (3) expense：operating expenses, (4) insurance：total payment of insurance
benefits, and (5) income：ordinary income. The output variable is the ordinary
income.
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Since there are 41 companies in this industry, which is rather small, we have used
the first method to estimate the efficient frontier function. Among 41, there is one
firm, Kanpo-Seimei, which is quite different from others because of the long-history
and some institutional changes. Then, we may need to exclude this firm to estimate
the efficiency frontier. Apparently, the monotonicity and concavity assumption on
the efficient frontier is not satisfied as we illustrated the problem in Figure 3. Thus,
it is appropriate to treat Kanpo-Seimei as an outlier and should be deleted, which is
not discussed in detail, but we briefly mention to the fact that the historical role of
the life-insurance industry has quite different from other industrialized countries like
U.K. and U.S.. There were some historical as well as institutional reasons why there
are a few major life-insurance companies in Japan and the number of life-insurance
companies is small in comparison with those in the U.S. and U.K.. Kanpo-Seimei
was originally a part of the National Post Office in Japan, and it was privatized in
2006, for instance. See Kubo (2011) for some details of the historical development
of the life and non-life insurance industries in Japan.

In our analysis we have focused on the data on 40 companies in our empirical
analysis. We used the number of office workers as an input and ordinary income
as the output and estimated the 2021 efficient frontier in Figure 4. We also used
Capital as an input and ordinary income as the output and estimated the 2021
efficient frontier in Figure 5. From these two figures we have found that we can
estimate the frontiers in a reasonable manner. That is, there are several companies,
which are close to the efficient frontier and there are other inefficient companies. We
also found that there are only several large companies in the life-insurance industry,
the estimation of the efficient frontier in the right-hand area is statistically a difficult
problem.

8 Concluding Remarks

In this paper, we discussed the problem of DEA and have developed a new SDEA
method based on the statistical modeling of linear regression and extreme value
distribution, which may be new to both the operations research and statistics com-
munities. We also report an empirical analysis of life-insurance industry in Japan as
an application. Because the number of data is quite small in our example, we used
the linear regression based method for estimating coefficients. When the number of
data is large, however, we have shown that some efficiency gain in the statistical es-
timation could be obtained under some additional conditions if we use the statistical
extreme value (SEVT) method.

There are a number of problems in the SDEA method remained to be investi-
gated. First, we could not have obtained the asymptotic distribution of the intercept
parameter a in two estimation methods. Second, the asymptotic theory of the sec-
ond estimation method without Conditions A, B, and/or C is currently an important
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Figure 3: An outlier situation : In the life-insurance industry in Japan, there is an
outlier and there are some reasons why it is.
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Figure 4: An estimated frontier : Input is Workers and output is Income.
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Figure 5: An estimated frontier : Input is Capital and output is Income.

research topic. Third, the statistical models treated in this paper can be generalized
to several directions including multivariate inputs and outputs. In some cases, how-
ever, it is not a trivial task to impose the monotonicity and concavity restrictions
when we estimate the estimated frontiers from a finite set of data. If we had a huge
number of data, it may be possible to use explanatory variables in an efficient way.

Another important statistical issue would be that there can be several procedures
to choose the number of intervals (m) in a finite number of data analysis and we
need to develop some criterion of selecting the number of interval nodes (m) in
some optimal way given a finite number of data. It includes some methods to
choose intervals randomly.

We are currently investigating various aspects of theoretical problems and appli-
cations of the SDEA method proposed in the present work. We are also developing
the R-programs for numerical evaluations.
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