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Abstract

We develop a new method called frequency regression and smoothing (or
the SIML-frequency method) based on the nonstationary errors-in-variables
model. It is developed for estimating the relationships among hidden states
of random variables and handling noisy nonstationary small sample time se-
ries economic data in comparison with data in engineering fields and natural
sciences. Many economic time series include not only trend, cycle, seasonal,
and measurement error components, but also factors such as abrupt changes,
trading-day effects, and institutional changes. The frequency regression and
smoothing method can be applied to handle such factors in nonstationary time
series. The proposed method is simple and applicable for analyzing nonsta-
tionary economic time series and handling seasonal adjustments. Our formu-
lation leads to the asymptotic results on the low frequency method proposed
by Müller and Watson (2018) as a consequence. An illustrative empirical
analysis of the macro-consumption in Japan is provided.
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1. Introduction

A considerable amount of research has been published on the use of statistical time
series analysis of macroeconomic time series data. An important feature of the
macroeconomic time series, which is different from the standard time series anal-
ysis, is that the observed time series is an apparent mixture of nonstationary and
stationary components including apparent seasonality. The nonstationarity may
include not only classical trend-cycle components, but also abrupt changes and out-
liers in the trend-noise components. Recent (vivid) examples are the macro-effects
of COVID-19 occurring in 2020-2023 and the financial crisis in 2008-2009. Another
feature is the fact that measurement errors in the economic time series play an im-
portant role because many macroeconomic data are constructed from various sources
including sample surveys from major official statistics, whereas the statistical time
series analysis often ignores measurement errors. Further, many official agencies
in the world apply the X-12-ARIMA or X-13ARIMA-SEATS programs of the U.S.
Census Bureau, which use the univariate reg-ARIMA model to remove seasonality,
as the standard filtering procedure to publish the seasonally adjusted data. (See
Census Bureau (2020).) The last important feature is that the sample size of the
macroeconomic data is rather small in comparison with many data in engineering
fields and natural sciences. We obtain 120 time series observations for each series
after collecting quarterly data over 30 years, for instance.

The quarterly GDP series and its major components in Japan, which have been
the most important data in Japanese macroeconomy, are constructed since 1994 by
the cabinet office of Japan at 2023 year. Unlike the U.S.macro-data, both original
and seasonally adjusted data have been published from Cabinet Office, and then
for us they may give a good opportunity to analyze the appropriateness of official
seasonal adjustment from original series. Since the sample size is small, it is im-
portant to use an appropriate statistical procedure to extract information on the
trend-cycle, seasonal and noise (or measurement error) components in a systematic
manner from data.

In this study, we develop a new statistical method called the frequency regression
and smoothing (or the SIML filtering or smoothing method) based on the nonsta-
tionary errors-in-variables model to estimate hidden states of random variables and
handle multiple time series data. In particular, it is based on the frequency domain
analysis of nonstationary time series and it can be applicable to small sample eco-
nomic data. For estimating nonstationary errors-in-variables models, we develop the
linear regression methods in the frequency domain for nonstationary multivariate
time series. Macroeconomic variables include important factors such as structural
breaks, trading-day effects, and institutional changes in addition to trend, cycle,
and seasonal components as well as the measurement errors. Since there are many
factors in nonstationary time series, statistical method that can cope with them in a
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systematic and coherent manner yet to be developed. The proposed SIML method
for analyzing nonstationary multivariate time series. can be applied to handle these
factors systematically. It is simple and applicable to several problems when analyz-
ing a nonstationary multivariate economic time series.

There are several related studies to our method. In statistical multivariate anal-
ysis, some studies on the errors-in-variables models are Anderson (1984, 2003) and
Fuller (1987); however, they considered multivariate statistical models for indepen-
dent observations, and the underlying situation is different from ours. As classi-
cal time series studies, Granger and Hatanaka (1964), and Brillinger and Hatanala
(1969) introduced the spectral and harmonic analysis of economic time series. Engle
(1974) proposed the band spectrum regression for stationary economic time series.
Also our work is closely related to the problem of Baxter and King (1999), and
Müller and Watson (2018). In particular, our formulation leads to some asymptotic
results on the low frequency method proposed by Müller and Watson (2018) as a
consequence, which seem to be new in the literature. Our method of frequency
regression could be regarded as extensions of their analyses to nonstationary time
series in the sense that we can use not only the trend-cycle components, but also
the seasonal components, institutional changes and trading-day effects. The novel
feature of this study may be to use the spectral decomposition of non-stationary
multivariate time series and it is a generalization of Kunitomo and Sato (2021).

The rest of the manuscript is organized as follows. In Section 2, we explain
the nonstationary errors-in-variables model and the SIML filtering (or smoothing)
method. Then, in Section 3, we introduce the frequency regression method and as
an application, we mention to the result obtained by Müller and Watson (2018). In
Section 4, we discuss the regression smoothing method based on SIML smoothing. In
Section 5, we discuss the likelihood function and in Section 6, we show an illustrative
empirical analysis of the macro-consumption of durable goods in Japan. In Section 7,
we provide some concluding remarks. Some details of the mathematical derivations
of the theoretical results on frequency regression and the corresponding figures are
presented in the Appendix.

2. Nonstationary errors-in-variables models and SIML Filter-
ing

2.1 Nonstationary errors-in-variables models

Let yji be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =
1, · · · , p. Let yi = (y1i, · · · , ypi)

′
be a p × 1 vector and Yn = (y

′
i) (= (yij)) be

an n × p matrix of observations, further let y0 be the initial p × 1 vector. We
investigate the statistical time series model with several unobservable components
when we have the underlying nonstationary component xi (= (xji)) (i = 1, · · · , n),
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which may be represented an I(1) process, the vector of the noise (or measurement
error) component v

′
i = (v1i, · · · , vpi), which may include the seasonal component

and be represented an I(0) process. We use the nonstationary errors-in-variables
representation in the additive form

yi = xi + vi (i = 1, · · · , n),(2.1)

where xi and vi (i = 1, · · · , n) are sequences of a nonstationary I(1) process and
a stationary I(0) process. (We assume that xi and vi (i = 1, · · · , n) are mutually
independent for the simplicity.) The nonstationary state variable satisfies

∆xi = (1− L)xi = v
(x)
i(2.2)

with the lag operator Lxi = xi−1, ∆ = 1− L, and

v
(x)
i =

∞∑
j=0

C
(x)
j e

(x)
i−j ,(2.3)

where e
(x)
i denotes a sequence of i.i.d. random vectors with E(e

(x)
i ) = 0 and

E(e
(x)
i e

(x)′

i ) = Σ(x)
e (a positive-semi-definite matrix). The p× p coefficient matrices

C
(x)
j (= c

(x)
kl (j)) are absolutely summable and ∥C(x)

j ∥ = O(ρj), where 0 ≤ ρ < 1 and

∥C(x)
j ∥ = maxk,l=1,···,p |c(x)kl (j)|. The initial values y0 (=x0) is fixed. The stationary

noise component vi satisfies

vi =
∞∑
j=0

C
(v)
j e

(v)
i−j ,(2.4)

where the p × p coefficient matrices C
(v)
j are absolutely summable and ∥C(v)

j ∥ =

O(ρj), where 0 ≤ ρ < 1 and e
(v)
i represents a sequence of i.i.d. random vectors with

E(e
(v)
i ) = 0 and E(e

(v)
i e

(v)′

i ) = Σ(v)
e (positive definite matrix).

We consider the situation when we have the observations of an n × p matrix
Yn = (y

′
i) and set the np × 1 random vector (y

′
1, · · · ,y

′
n)

′
. The non-stationary

errors-in-variables formulation in (2.1)-(2.4) includes several important time series
decomposition with the trend, cycle, seasonal and irregular components. The im-
portant feature is that we have both non-stationary and stationary components.
Apparently, the trend component is nonstationary while the measurement error
component is stationary. Although the observed process yi is an I(1) process and
the difference process ∆yi is an I(0) process, it is important to distinguish different
components by considering their spectral characteristics in the frequency domain. It
is because we often need to detect the trend-cycle component and seasonal compo-
nent of macro-economic time series although the number of observations is usually
small in comparison with data in many engineering fields and natural sciences. The
information of time series in different frequencies is important. (The implication of
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our formulation in frequency domain will be explained in Section 5.)

There are several decomposition models of time series based on (2.1)-(2.4).
When the state variables of our interest are the trend-cycle components TCi (p× 1
vectors), we take xi = TCi (i = 1, · · · , n) and ∆TCi = TCi−TCi−1 is a stationary
process, which has the MA representation of (2.3). In this case vi is the stationary
error process including the measurement errors except the trend-cycle components.
An important example is the seasonal adjustment such as X-13ARIMA-SEATS of
the U.S. Census Bureau, which usually estimates the seasonal components to con-
struct seasonal adjusted series. When the state variables of our interest are the
trend-cycle components TCi and the seasonal component si (p × 1 vectors), we
may interpret that ∆TCi = TCi − TCi and si are stationary processes, and
∆xi = ∆TCi + si has the MA representation of (2.3). In this case, we may

have ∆TCi =
∑∞

j=0 C
(TC)
j e

(TC)
i−sj and si =

∑∞
j=0 C

(s)
sj e

(s)
i−sj , where the lag operator

is defined by Lssi = si−s (s ≥ 2), and e
(TC)
i and e

(s)
i represent sequences of i.i.d.

random vectors. That is, E(e
(TC)
i ) = E(e

(s)
i ) = 0 and E(e

(TC)
i e

(TC)′

i ) = Σ(TC)
e

(non-negative definite matrix) and E(e
(s)
i e

(s)′

i ) = Σ(s)
e (non-negative definite ma-

trix). The p × p coefficient matrices C
(TC)
j and C

(s)
j are absolutely summable such

that ∥C(TC)
j ∥ = O(ρj) and ∥C(s)

j ∥ = O(ρj), where 0 ≤ ρ < 1.
We will explain the filtering procedure to estimate the trend-cycle components as
state variables and the frequency regression on trend-cyle components in Sections 2
and 3. Also we will explain the filtering procedure to estimate the seasonal compo-
nents as the state variables for the seasonal adjustment in Sections 2 and 4.

When there are no cycle and seasonal components, we take that each pair of vec-
tors ∆xi and vi are independently, identically, and normally distributed (i.i.d.) as
Np(0,Σx) and Np(0,Σv), respectively, Σx = Σ(x)

e and Σv = Σ(v)
e . Then, given the

initial condition y0 and x0, vec(Yn) ∼ Nn×p

(
1n · y

′
0, In ⊗Σv +CnC

′
n ⊗Σx

)
, where

1
′
n = (1, · · · , 1) and

Cn =


1 0 · · · 0 0
1 1 0 · · · 0
1 1 1 · · · 0
1 · · · 1 1 0
1 · · · 1 1 1


n×n

.(2.5)

For the non-stationary errors-in-variables model in (2.1)-(2.4), we introduce the
K∗

n−transformation from Yn to Zn (= (z
′
k)) using

Zn = K∗
n

(
Yn − Ȳ0

)
,K∗

n = PnC
−1
n ,(2.6)
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where Ȳ0 = 1ny
‘
0,

C−1
n =


1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1


n×n

,(2.7)

and

Pn = (p
(n)
jk ) , p

(n)
jk =

√√√√ 2

n+ 1
2

cos
[

2π

2n+ 1
(k − 1

2
)(j − 1

2
)
]
.(2.8)

We find thatDn is a diagonal matrix with the k-th element dk = 2[1−cos(π( 2k−1
2n+1

))] (k =

1, · · · , n) by using the spectral decomposition C−1
n C

′−1
n = PnDnP

′
n, and therefore,

we can write

a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(2.9)

When we have the non-stationary and stationary parts, it is natural to use the
K∗

n−transformation to decompose time series data with discrete time into two parts.
Because we use (2.7), the transformed time series is stationary and it is possible to
use the spectral decomposition of stationary time series with discrete time in the
frequency domain.

2.2 SIML filtering method

We consider the general filtering procedure based on the K∗
n−transformation (2.6).

It is easy to interpret the role of the elements of the resulting n× p random matrix
Zn in the data analysis because they are obtained by the transformation that takes
real values in the frequency domain. We consider the inversion of the transformed
parts of orthogonal frequency processes.

Let an n× p matrix

X̂n = CnPnQnPnC
−1
n (Yn − Ȳ0) ,(2.10)

where Zn = PnC
−1
n (Yn − Ȳ0) and Qndenotes an n× n filtering matrix.

The stochastic process Zn represents the orthogonal decomposition of the original
time series Yn. Then, the time series X̂n represents the realization of some fre-
quency parts of the original time series.
We provide explicit forms of useful examples including the trend-cycle filtering pro-
cedure and seasonal filtering procedure for economic time series. For the filtering
(or smoothing) method in the form of (2.10), we provide two examples.
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Example 1 : Trend Smoothing : Let an m × n choice matrix (0 < m < n)
Jm = (Im,O), and let n× p matrix

X̂n = CnPnJ
′

mJmPnC
−1
n (Yn − Ȳ0)(2.11)

and an n× n matrix
Qn = J

′

mJm .(2.12)

We construct an estimator of the n × p hidden state matrix Xn in the frequency
domain using the inverse transformation of Zn. We can recover the trend-cycle
components by deleting the estimated noise parts in the high-frequency and using
only low frequency parts.
Let the [m+ (n−m)]× [m+ (n−m)] partitioned matrix

Pn =

(
P11 P12

P21 P22

)

and

PnJ
′

mJmPn =

(
P

′
11

P
′
12

)
(P11,P12) = In −

(
P

′
21

P
′
22

)
(P21,P22) .(2.13)

Then the (j, j
′
)-th element of An = PnJ

′
mJmPn (= (aj,j′ )) is given by

aj,j =
2m

2n+ 1
+

1

2n+ 1

[
sin 2mπ

2n+1
(2j − 1)

sin π
2n+1

(2j − 1)

]
,(2.14)

ai,j′ =
1

2n+ 1

sin 2mπ
2n+1

(j + j
′ − 1)

sin π
2n+1

(j + j ′ − 1)
+

sin 2mπ
2n+1

(j − j
′
)

sin π
2n+1

(j − j ′)

 (j ̸= J
′
) .

Example 2 : Band Smoothing : We consider the band filtering based on the
K∗

n− transformation in (2.6) and use the inversion of only a band of frequency parts
from the random matrix Zn. A leading example is the seasonal frequency in the
discrete time series, we consider s (> 1) to be a positive integer in this case. Let an
m2 × [m1 +m2 + (n−m1 −m2)] choice matrix Jm1,m2,n = (O, Im2 ,O), and let the
n× p matrix

X̂n = CnPnJ
′

m1,m2,n
Jm1,m2,nPnC

−1
n (Yn − Ȳ0)(2.15)

and the n× n matrix
Qn = J

′

m1,m2,n
Jm1,m2,n .(2.16)

As an example, when we have the seasonal frequency λs (0 ≤ λs ≤ 1
2
), we take m1 =

[2n/s]−h and m2 = 2h+1. The (j, j
′
)-th element of An = PnJ

′
m1,m2,n

Jm1,m2,nPn (=
(aj,j′ )) is given by

aj,j =
2m2

2n+ 1
+

1

2n+ 1

sin 2(m1+m2)π
2n+1

(2j − 1)− sin 2(m1)π
2n+1

(2j − 1)

sin π
2n+1

(2j − 1)

 ,(2.17)
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ai,j′ =
1

2n+ 1

sin 2(m1+m2)π
2n+1

(j + j
′ − 1)− sin 2(m1)π

2n+1
(j + j

′ − 1)

sin π
2n+1

(j + j ′ − 1)

+
sin 2(m1+m2)π

2n+1
(j − j

′
)− sin 2(m1)π

2n+1
(j − j

′
)

sin π
2n+1

(j − j ′)

 (j ̸= j
′
) .

When m1 = 0 and m2 = m, (2.16) becomes (2.12) in Example 1. When we have
seasonality, however, there is a complication in the data analysis to be considered.
Because we have discrete observations such as quarterly or monthly data, we need to
use several frequency parts of the transformed process. For quarterly data, a 1 year
(4 quarters) cycle cannot be distinguished from the 2 quarters cycle. For monthly
data, the 1 year cycle cannot be distinguished from the 6, 4, 3, 2.4, and 2 months
cycles. (We shall discuss examples in Section 4 in details.)

3. Frequency Regression

In this section, we partition the transformed random variables in the frequency
domain and consider a linear regression model based on observations of q×p matrix
Z∗

m by
Z∗

m = FqPnC
−1
n (Yn − Ȳ0) = [z∗1m,Z

∗
2m] ,(3.1)

where Fq denotes a q × n matrix and q (> p) depends on n as q = qn. In this
notation z∗1m is a q × 1 vector and Z∗

2m is a q × (p− 1) matrix.
There are several interesting examples. Since we consider the case when the rank of
Fq is p (p < q), let us investigate this case.
When we have nonstationary time series, we often have trend, cycle, seasonal, and
noise components. To handle these components, we can use a more complicated
transformation Fq. Further, there are trading-day components, leap year effects,
structural changes such as the 2008 financial crisis and the 2020-2022 COVID-19
crisis, and institutional changes such as the consumption tax in Japan. When we
use seasonal adjusted data, which are published by official agencies, it is important
to handle these effects in meaningful ways. It is important to understand that the
many official agencies use the X-12-ARIMA or X-13ARIMA-SEATS programs of
the U.S. Census Bureau, which utilized the Reg-ARIMA modelling to deal with the
problems. Thus, from the standard statistical view, it is known that an ad hoc
method may be followed to handle these effects in official statistics partly because
there are many factors to be considered and/or interpreted.

We can consider the simple the case of the transformation when Fq = Jm. We first
investigate this case and assume that the rank of Fq is p (p < q). We define p × p
matrices

G∗
m =

1

m
Z∗′

mZ
∗
m ,Gn =

1

n
Z

′

nZn(3.2)
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and their probability limits as m = mn → ∞ (n → ∞,mn/n → 0)

plimn→∞G∗
m = Σx , plimn→∞Gn = Σ∆y ,(3.3)

where

Σx = (
∞∑
j=0

C
(x)
j )Σ(x)

e (
∞∑
j=0

C
(x)′

j ) (= f∆x(0)) ,(3.4)

where Σx represents the spectral density matrix of ∆xi at zero frequency. (See (5.1)
in Section 5 and Theorem A.1 in the Appendix.) The p×pmatrixΣ∆y is the spectral
density matrix of ∆yi at zero frequency, whch is different from Σx (the long-run
variance-covariance matrix of ∆xi) in the errors-in-variables models of (2.1)-(2.4).

Let Σv = (
∑∞

j=0C
(v)
j )Σ(v)

e (
∑∞

j=0 C
(v)′

j ), which is a p × p positive definite matrix

because we assumed that Σ(v)
e is positive definite in (2.4). This assumption on the

errors-in-variables models has an important role because we have both the signal
and noise terms in the observed time series.

We partition G∗
m, Σx and Σv into (1 + k)× (1 + k) (k = p− 1) submatrices as

G∗
m =

[
g∗11 g∗

12

g∗
21 G∗

22

]
, Σx =

[
σ
(x)
11 σ

(x)
12

σ
(x)
21 Σ

(x)
22

]
, Σv =

[
σ
(v)
11 σ

(v)
12

σ
(v)
21 Σ

(v)
22

]
.(3.5)

Then, we will investigate statistical properties of the least squares estimator in the
frequency domain

β̂m = G∗−1
22 g∗

21 ,(3.6)

which is an estimator of vector βm = Σ
(x)−1
22 σ

(x)
21 under the assumption that the

inverse matrices of G∗
22 and Σ

(x)
22 exist. (We need to assume that Σ

(x)
22 has a full

rank.)
We write

β̂m − β = [Z∗′
2mZ

∗
2m]

−1Z∗′
2mZ

∗
m

(
1
−β

)
,(3.7)

where we partitioned Z∗
m into q × (1 + k) submatrices Z∗

m = (z∗1m,Z
∗
2m).

Then we have the next result on the asymptotic properties of the least squares
estimator and the proof is presented in the Appendix.

Theorem 3.1 : Let mn = nα, m = [mn] and m → ∞ (as n → ∞). In (2.1)-(2.4),

assume that the fourth-order moments of e
(x)
i and e

(v)
i are bounded.

(i) For 0 < α < 1, G∗
m is a consistent estimator of Σx as n → ∞.

(ii) Assume that the rank of Σ
(x)
22 is k (= p − 1) and 0 < α < 0.8. Then when

m → ∞ (n → ∞),
√
mn[β̂m − β] is asymptotically and normally distributed as

N(0, σ11.2Σ
(x)−1
22 ) and σ

(x)
11.2 = σ

(x)
11 − σ

(x)
12 Σ

(x)−1
22 σ

(x)
21 .
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Then, we can rewrite um = z∗1m − Z∗
2mβ, that is,

z∗1m = Z∗
2mβ + um(3.8)

and E[um] = 0. This is a linear regression equation, however, the error term of um

has a specific form of heteroscedasticity.
Theorem 3.1 is valid when we estimate the covariance matrix Σx of the hidden state
variables, which is different from the observed covariance of the differenced data
Σ∆y. We can delete the effects of noisy parts of nonstationary time series by using
Gm instead of Gn with the condition mn/n → 0 and mn → ∞. By the condition
0 < α < 0.8, we can recover the asymptotic normality of the least squares estimator
without noises.

One direct application of Theorem 3.1 is Müller and Watson (2018), who proposed
the so-called long-run co-variability of macroeconomic time series. They investigated
many nonstationary time series using their method and obtained some interesting
findings. We can interpret their method as the relationships among long-run trends
in our framework when p = 2. Let 2× 2 matrices Σ(x)

e = (σ
(x)
ij ); then, we define the

regression coefficient β = [σ
(x)
22 ]

−1σ
(x)
21 under the assumption that σ

(x)
22 (= Σ

(x)
22 ) > 0.

Further, let G∗
m = (ĝ

(x)
ij ), and an n× 2 matrix

(a1n, a2n) = C−1
n (Yn −Y0) .(3.9)

For estimating β, we define the estimated regression coefficient as

β̂ = [ĝ
(x)
22 ]

−1ĝ
(x)
21 = [a

′

2nPnJmJ
′

mPna2n]
−1[a

′

2nPnJmJ
′

mPna1n] .(3.10)

This quantity can be interpreted as the least squares slope of the transformed vector
from y1n on the transformed vector from y2n for a n×2 matrix Yn = (y1n,y2n); that
is, essentially the same as the estimation method proposed by Müller and Watson
(2018) 1. However, there is an important difference between the SIML method and
their method, that is, we consider the situation when m = [mn] → ∞ as n → ∞
while mn/n → 0. This is a natural framework for the asymptotic theory on their
method.
We fix m, which is independent from n and we investigate the case when ∆xi and
vi (i = 1, · · · , n) are mutually independent with y0 = x0 = 0 for the simplicity.
Because (2.1)-(2.4), we find that Σ∆y = Σx + 2Σv. Then, as n → ∞,

β̂
p−→ [Σ

(x)
22 + 2Σ

(v)
22 ]

−1[σ
(x)
21 + 2σ

(v)
21 ] .(3.11)

1In their notation, m corresponds to q, which is fixed. They did use (differenced) stationary
data, and thus, we could interpret that they calculated the linear regression from the filtered data
X̂∗

n = P
′

nJ
′

mJmPnC
−1
n (Yn −Y0) as a modification of (2.11) in our notation.
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This corresponds to the fact that the least squares estimator is not consistent when
the sample size is large in the classical errors-in-variables models. (See Anderson
(1984) in details.) When Σv is relatively small, the probability limit of β̂ is close to
β because the error terms vi are negligible. If there are no measurement errors as
the standard time series analysis, Σv = O and β̂

p−→ β as n → ∞. From Theorem
3.1 (and Theorem A.1 in the Appendix), we btain the following result.

Corollary 3.1 : When p = 2, we assume that Σ(x)
e is positive semi-definite, Σ(v)

e

is positive definite, and the fourth-order moments of e
(x)
i and e

(v)
i (i = 1, · · · , n) are

bounded.
(i) Fix m, which is independent of n. Then β̂ in (3.10) is not consistent when
n → ∞.
(ii) Set mn = nα and 0 < α < 1 and construct β̂m in (3.6). Then, as n −→ ∞,

β̂m − β
p−→ 0 .

(iii) Setmn = nα and 0 < α < 0.8, then, as n −→ ∞,
√
mn[β̂m−β] is asymptotically

normal with N(0.σ
(x)
11.2).

Since our method can be generalized to other situations beyond the trend-cycle
components of non-stationary time series, it is a generalization of Müller and Watson
(2018). For instance, it is rather straight-forward to incorporate the regression effects
of dummy variables in trend relations such as structural breaks and the seasonal
frequency parts.

4. Regression Smoothing

When we have noisy-nonstationary time series, we often need to remove the sea-
sonality and/or low frequency component. However, in some applications of of-
ficial statistics, we need to construct the seasonally adjusted data after removing
additional effects such as trading-day components including the leap year effect,
structural changes such as the 2008 financial crisis and institutional changes such as
the introduction of consumption tax in Japan. These effects are can be defined in
deterministic ways.

Let the observed vector times series yi be decomposed as

yi = xi + SCOi + vi (i = 1, · · · , n),(4.1)

and SCOi = SCi +Oi, where xi denotes the trend-cycle component, SCi denotes
the structural break component, vi denotes the noise component, and Oi represents
the outlier component.
In this section we consider the case where in SCi and Oi can be expressed as
SCi +Oi = SCOi(w), where w denotes the set of instrumental variables. If these
terms can be expressed as linear relationships, we write

yi = B
′
wi + ui (i = 1, · · · , n),(4.2)

11



where B
′
denotes a p×r matrix, wi denotes a r×1 vector of instrumental variables,

zi and ui = xi + vi represents a sequence of I(1) process. Hence, the model is a
multivariate regression model when the noise terms are I(1) process with stationary
noise term and seasonal terms. We incorporate extraneous information such as
dummy variables to extract or delete some components from the observed time
series based on (4.1).
To find the regression and smoothing procedure of trend and seasonal components,
we use the K∗

n−transformation of data and rewrite (4.2) as

Y∗
n = W∗

nB+U∗
n ,(4.3)

where Y∗
n = PnC

−1
n (Yn −Y0) and W∗

n = PnC
−1
n Wn (Wn = (w

′
t)) represent n× p

and n×r matrices of the explained variables and explanatory variables, respectively,
and U∗

n = PnC
−1
n Un and Un = (u

′
i) are n × p disturbance matrices. (We fix the

initial condition y0 (= x0) and the state variables x∗
i = xi − x0.

As a consequence of the K∗
n−transformation, we have the disturbance terms in (4.3),

that are stationary processes.
Because (4.2) is a linear regression equation, it is possible to apply Theorem 3.1

by defining a (p+ r)× 1 vector

y∗
i =

[
yi

wi

]
.

Then we can estimate the regression coefficients and calculate the residuals from the
regression equations. When vectors wi (i = 1, · · · , n) are deterministic, we assume
that

lim
m→∞

1

m
W∗′

mW
∗
m = Σw∗ ,(4.4)

where Σw∗ denotes a positive definite matrix and W∗
m = JmPnC

−1
n Wn represents

an m× r matrix.
When the r×1 instrumental variables wi (i = 1, · · · , n) are exogenous or determinis-
tic, we have the following result from Theorem 3.1 and the proof is in the Appendix.

Theorem 4.1 : In (2.1)-(2.4), assume that the fourth-order moments of e
(x)
i and e

(v)
i

are bounded. Let Y∗
m = W∗

mB+U∗
m and U∗

m = JmU
∗
n, where Y∗

m = JmPnC
−1
n Yn

and W∗
m = JmPnC

−1
n Wn. We also assume the nonsingularity condition (4.4)

and wi (i = 1, · · · , n) is exogenous or deterministic function. We denote B̂m =
(W∗′

mW
∗
m)

−1W∗′
mY

∗
m is the least squares estimator of Y∗

m on W∗
m. Let mn = nα

(0 < α < 0.8) and m = [mn]. Then, as n −→ ∞, we have the asymptotic normality

√
mn[B̂m −B]

w−→ N(0,Σ−1
w∗ ⊗Σx) .(4.5)
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Define the general transformed instrumental variables

Ŵn = JWPnC
−1
n Wn ,(4.6)

where JW represents a q × n choice matrix, and we denote the idempotent matrix
(q × q matrix)

QW = Ŵn(Ŵ
′

nŴn)
−1Ŵ

′

n .(4.7)

We utilize the regression information on smoothing by utilizing the projection matrix
QW to construct

X̂n = CnPnQWPnC
−1
n (Yn − Ȳ0) .(4.8)

There are several possibilities to how we incorporate the extraneous information
in the smoothing procedure. It is reasonable to consider the case when QW is
an idempotent matrix such as Q2

W = QW . In our study, we use two alternative
smoothing procedures : Type-I and Type II. Type-I smoothing may be appropriate
for change-point smoothing in the trend component and Type-II smoothing may be
appropriate for outlier detection in the noise component.

Type-I Smoothing :

Type-I is based on Example 1 presented in Section 2. The (trend-cycle) regression
part of Yn is (4.1) when we take JW = (Im,O) (Ŵn represents an m × r matrix
and J

′
m = (Im,O)

′
represents an n×m matrix) and an n× n matrix

Q(0)
n = J

′

mŴn(Ŵ
′

nŴn)
−1Ŵ

′

nJm .(4.9)

If we want to remove the regression effects and use only the trend-cycle part, we
need to take JW = Jm, Jm = (Im,O) (m× n choice matrix, m ≤ n) and

Q(1)
n = J

′

mJm −Q(0)
n = J

′

m[Im − Ŵn(Ŵ
′

nŴn)
−1Ŵ

′

n]Jm .(4.10)

Then we have the decomposition

X̂n = CnPnJ
′

mJmPnC
−1
n (Yn − Ȳ0)(4.11)

= CnPnJ
′

m[Q
(0)
n +Q(1)

n ]JmPnC
−1
n (Yn − Ȳ0) .

In this case, we have the property Q2
n = Qn = Q(0)

n +Q(1)
n = J

′
mJm , and we have

the decomposition of the trend-cycle part and the regression part. There is a simple
interpretation of this smoothing because we use only the regression part at m low
frequencies. There are two steps in the smoothing procedure. First, we remove the
regression part from Yn by taking

X(1)
n = CnPn[In −Q(0)

n ]PnC
−1
n (Yn − Ȳ0) .(4.12)
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Then, as the second step, we apply the 2nd smoothing to Y(1)
n as

X(2)
n = CnPnJ

′

mJmPnC
−1
n X(1)

n(4.13)

by taking another transformation.
Then, the resulting transformation is (4.8) withQW = Q(1)

n after an iteration. There
should be some mechanism for performing further iterations.

Type-II Smoothing :

Type-II smoothing is based on Example 2 presented in Section 2. When we need to
estimate not only the trend component, but also the noise component, it is important
to estimate structural changes and outlier components consistently.

For the seasonal adjustment of time series, we need to estimate the seasonal
component for obtaining the seasonally adjusted series, and it is related to Example
2. Thus, we construct an q×n choice matrix Fq such that the seasonal components
can be removed in their frequencies.
When s = 4, we want to remove the data with frequencies around λs = 1/4, 1/2
(1/2 corresponds to the cycle of 2 quarters and 1/4 corresponds to the cycle of 4
quarters). However, we cannot distinguish the 4 quarters cycle from the 2 quarters
cycle by using quarterly observations. We set m1 = [2n/s], and an (n− 2h− 1)× n
choice matrix and an (n− 3h− 2)× (n− 2h− 1) choice matrix as

JQ
1 =

[
Im1−(h+1) O O

O O In−m1−h

]
, JQ

2 = [In−3h−2 , O] .(4.14)

Then we take a q × n matrix
FQ

q = JQ
2 J1

Q(4.15)

with a small positive integer h > 0.
When s = 12, we need a more complicated transformation to remove season-
ality because we cannot distinguish the 12 month cycle from the 6, 4, 3, 2.4,
and the 2 month cycles using monthly observations with frequencies around λs =
1/12, 2/12, 3/12, 4/12, 5/12, 6/12. We set mi = i[2n/s] and take (n − i(2h + 1)) ×
(n − (i − 1)(2h + 1)) choice matrices (i = 1, · · · , 5) and an (n − 5(2h + 1) − (h +
1))× (n− 5(2h+ 1)) choice matrix such that

JM
i =

[
Imi−(i−1)(2h+1)−(h+1) O O

O O In−mi−h

]
, JM

6 = [In−11h−6 , O] ,(4.16)

with a small positive integer h > 0. To remove the data with seasonal frequencies
around λjs (j = 2, 3, 4, 5) using JM

j (j = 1, · · · , 6), we set a q × n matrix

FM
q =

6∏
j=1

JM
7−j .(4.17)
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More generally, when we have information of the instrumental variables Wn, we
can incorporate the estimated coefficient by regressing

Y∗
m = FqPnC

−1
n (Yn − Ȳ0)(4.18)

to
W∗

m = FqPnC
−1
n (Wn − W̄0) ,(4.19)

where Fq is either F
Q
q or FM

q .
Type-II smoothing is defined by

Q(2)
n = W∗

n(W
∗′
nW

∗
n)

−1W∗′
n .(4.20)

and
Q(3)

n = F
′

qFq −Q(2)
n .(4.21)

Then, we have the decomposition

X̂∗
n = CnPnF

′

qFqPnC
−1
n (Yn − Ȳ0)(4.22)

= CnPn[Q
(2)
n +Q(3)

n ]PnC
−1
n (Yn − Ȳ0) .

In this case, we have the decomposition Q(2)
n +Q(3)

n = F
′
qFq and the corresponding

decomposition of the trend-cycle and regression parts.

Examples of Dummy Variables :
There are some examples of outlier and trend dummies. For nonstationary time
series, we should be careful about normalization because there can be significant
effects on smoothing. Although there are many other possible dummy variables, we
provide some examples that have been used in official data handling such as official
seasonal adjustment. In the X-12-ARIMA and X-13ARIMA-SEATS programs, for
instance, the Reg-ARIMA modeling uses the following dummy variables. See Census
Bureau (2020) for the details of the X-12ARIMA-SEATS program and the list of
variables in the Reg-ARIMA modeling.)

We give the next list because of an illustration, which will be used in an empirical
analysis in Section 6 below. Let ws (s = 1, · · · , n) be the dummy variable.

Example 1 :
The level shift (LS) variable can be defined as ws = 0 if s < t and wt = 1 if s ≥ t
for s = 1, · · · , n. This can be handled by Type-I smoothing.

Example 2 :
The outlier variable can be defined as ws = 1 if s = t and wt = 0 if s ̸= t for
s = 1, · · · , n. This variable is often called additive outlier (AO).

Example 3 :
The ramp variable can be defined by ws = 1 if s < t0, ws = 1− (t− t0)/(t1 − t0) if
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t0 ≤ t ≤ t1, and wt = 0 if s ≥ t1.

Example 4 :
The double ramp variable can be defined by ws = 1 if s < t0, ws = 1−(t−t0)/(t1−t0)
if t0 ≤ t ≤ t1, ws = (t− t1)/(t2 − t1) if t1 ≤ t ≤ t2, and wt = c if s ≥ t2.

5. Frequency Domain Analysis and Likelihood

We consider the additive decomposition model yi = xi + vi (i = 1, · · · , n) of
(2.1)-(2.4) in the time domain and give an interpretation on the consequence of the
transformation of observation vectors byK∗

n in (2.6)-(2.9). The transformed random

variables z
(n)
k (k = 1, · · · , n) have a particular structure in the frequency domain.

For the resulting simplicity, we take positive integers m (= mn).

Let f∆x(λ) and fv(λ) be the spectral density (p × p) matrices of ∆xi and vi (i =
1, · · · , n), respectively, which are given by

f∆x(λ) = (
∞∑
j=0

C
(x)
j e2πiλj)Σ(x)

e (
∞∑
j=0

C
(x)′

j e−2πiλj) (−1

2
≤ λ ≤ 1

2
) ,(5.1)

and

fv(λ) = (
∞∑
j=0

C
(v)
j e2πiλj)Σ(v)

e (
∞∑
j=0

C
(v)′

j e−2πiλj) (−1

2
≤ λ ≤ 1

2
) ,(5.2)

where we set C
(x)
0 = C

(v)
0 = Ip as normalizations and i2 = −1. (See Chapter 7 of

Anderson (1971) with different notations, for instance.)
Then, the p× p spectral density matrix of the transformed vector process, which is
observable, and the spectral density of the difference series ∆yi (= yi − yi−1) can
be represented as

f∆y(λ) = f∆x(λ) + (1− e2πiλ)fv(λ)(1− e−2πiλ) .(5.3)

We denote the long-run variance-covariance matrices of trends and stationary com-
ponents for g, h = 1, · · · , p as

Σ(x)
e = f∆x(0) (= (σ

(x)
gh )) , Σ

(v)
e = fv(0) = (σ

(v)
gh ) .(5.4)

From (5.3), we find that f∆y(0) = f∆x(0) at the frequency λ = 0 and we can ignore
the effects of stationary noise terms in (2.1)-(2.4) if we use only the information
around the zero-frequency from data. That is, the information of the non-stationary
trend parts is separated from the information of the stationary noise parts in the
frequency domain.

Since the spectral matrices in (5.1)-(5.3) are complex-valued, we symmetrize the
spectral density matrices. Then, it is possible to relate the complex-valued spectral
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matrices to the real-valued random vectors and their likelihood function. By recon-
sidering the relationship among the continuous-valued discrete time series and the
spectral densities, it is possible to interpret the filtered parts and smoothing parts.
It has been sometimes neglected in the (standard) statistical time series analysis.

Let f (SR)
v (λk) and f

(SR)
∆x (λk) be the symmetrized p×p spectral matrices of vi and ∆xi

at λk (= (k − 1
2
)/(2n + 1)) for k = 1, · · · , n, that is, f (SR)

v (λk) = (1/2)[f (SR)
v (λk) +

f̄ (SR)
v (λk)] and f

(SR)
∆x (λk) = (1/2)[f

(SR)
∆x (λk) + f̄

(SR)
∆x (λk)]. We denote the n × p ma-

trix Zn = (z
(n)
k (λ

(n)
k )

′
) and λ

(n)
k = (k − 1/2)/(2n + 1) (k = 1, · · · , n), where λ

(n)
k

corresponds to the frequency of z
(n)
k . Then, the transformed random variables are

asymptotically orthogonal (or uncorrelated) and the orthogonal processes are ap-
proximately distributed as Gaussian distributions when n is large.
If we substitute λk into (5.3), we find that the variance-covariance matrix of z

(n)
k at

λk is approximately given by f∆y(λk) = f∆x(λk) + a∗knfv(λk) because ∥1− e2πiλk ∥2 =
2− 2 cos(2πλk) = a∗kn for k = 1, · · · , n.

Given the initial condition y0, the (-2) times the conditional log-likelihood func-
tion in (2.1)-(2.4) can be approximated except a constant term by

ln =
n∑

k=1

log |a∗knf (SR)
v (λk) + f

(SR)
∆x (λk))|(5.5)

+
n∑

k=1

z
′

k[a
∗
knf

(SR)
v (λk) + f

(SR)
∆x (λk)]

−1zk

provided that a∗knf
(SR)
v (λk) + f

(SR)
∆x (λk) are positive definite (a.e.).

In particular, we consider the case when ∆xi and vi are a sequence of independent
random vectors, then we have Σ(x)

e = f
(SR)
∆x (λk) and Σ(v)

e = f (SR)
v (λk) for k =

1, · · · , n. This corresponds to the case when

l∗n =
n∑

k=1

log |a∗knΣ(v)
e +Σ(x)

e |+
n∑

k=1

z
′

k[a
∗
knΣ

(v)
e +Σ(x)

e ]−1zk ,(5.6)

provided that a∗knΣ
(v)
e +Σ(x)

e are positive definite (a.e.).
Furthermore, if we we take k = 1, · · · ,mn such that mn/n → 0 and mn → ∞ as
n → ∞, we have a∗kn → 0 (k = 1, · · · ,mn). In this situation, the first mn terms
of (5.5) can be regarded as the log-likelihood function in the low frequency parts of
time series, which is given as

l∗∗1n =
m∑
k=1

log |Σ(x)
e |+

m∑
k=1

z
′

k[Σ
(x)
e ]−1zk ,(5.7)

provided that Σ(x)
e is positive definite.

The last representation corresponds to the Gaussian log-likelihood function based
on m mutually independent observations in the statistical multivariate analysis.
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(Anderson (2003), for instance.)
In this way, we can separate the likelihood information into different parts of time
series components in the SIML (separate information maximum likelihood) method.
The SIML estimator of Σ(x)

e is constructed by using zk (k = 1, · · · ,mn), and we have
some desirable asymptotic properties for Σ(x)

e .

When we have some dummy variables Wn, we need to assume that they are
independent of other noise, cycle, seasonal, and trend components. There can be
several ways to handle explanatory variables as explained as Type-I and Type II in
Section 4, but we explain a typical case. Given the initial condition and the informa-
tion set of explanatory variables Wn, (−2) times the conditional log-likelihood can
be approximated as (5.5) by z∗k(w) = y∗

k −B
′
w∗

k, where B is the parameter matrix,
y∗
k and w∗

k are the transformed explained variables and explanatory variables (using
K∗

n−transformation from the observed yi and wi (i = 1, · · · , n), respectively.
When we use the explanatory variables Wn, we can estimate the unknown matrix B
by Theorem 4.1 consistently. Let B̂ be the SIML estimator and z∗k = y∗

k−B̂‘w∗
k (k =

1, · · · , n), which depend son Wn and denote z∗k(w) (k = 1, · · · , n). To estimate Σx

when there are explanatory variables, for instance, it is reasonable to use

G∗
m(w) =

1

m

m∑
k=1

z∗k(w)z
∗′
k (w)(5.8)

because it is consistent and has the asymptotic normality if we take m = [mn] such
that mn/n → 0, mn → ∞ and n → ∞.

There are two remarks on the likelihood function of time series data in the above
discussion.
First, the ML estimation of unknown parameters in the nonstationary errors-in-
variables models may have some difficulty when p > 1 without some restrictions
of the parameter space. It is because the exact likelihood function can have pe-
culiar shape even when the observations are the sequence of independent random
variables. which is known in the statistical multivariate analysis. There could be
more complications when we have multivariate time series data with random walks,
seasonal components, autocorrelations and measurement errors.
Second, the likelihood functions in this section can be related to the classical topic
on the Wittle-type likelihood function for stationary time series in the literature,
which does not depend on the Gaussian distributions for underlying noise distribu-
tions in multivariate stationary processes. The maximum of Wittle-type likelihood
has been called the quasi-maximum likelihood (QML) estimation, which is discussed
and applied by Hosoya (1997), for instance.
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6. An Example of macro-consumption of durable goods

We use the official macro-consumption data of durable goods in Japan from 1994Q1
to 2019Q4 to illustrate the regression smoothing method 2. To construct the seasonal-
adjusted data, we need to estimate the seasonal factor to construct the seasonal
adjustment data. But then we need to estimate the trend and noise components to
estimate the seasonal component from the original quarterly time series at the same
time. The traditional X-13ARIMA-SEATS program of the U.S. Census Bureau has
a rather complicated procedure to do this by using moving average filtering repeat-
edly.

In our analysis, we applied the SIML smoothing procedure with m = 29 (Ex-
ample 1 in Section 2). and h = 2 (Type-2 smoothing in Section 4) , which yield
the minimum numbers of AIC. Hence at each seasonal frequencies 1/4 and 1/2,
we have chosen 5 and 3 frequency data points in (4.14) and (4.15) to estimate the
seasonal state variable by inverting the frequency bounds. All corresponding figures
are presented in Appendix B.

Figure 1 shows a summary of SIML smoothing for log-transformed data. This
was done because the original series has a significant heteroscedastic seasonality. In
Figures 1-4, “org ” stands for the original series, “trend ”, “seasonal ”, “noise ”
mean the estimated trend, seasonal, and noise components, while “adj ” means the
estimated seasonally adjusted series, i.e., the observed series minus the estimated
seasonal component. “Z ” means the transformed orthogonal series. In Figures 2-4,
“reg ” stands for the dummy variable.

The original time series has typical characteristics of major macroeconomic time
series in Japan, i.e., it is a realization of nonstationary time series and exhibits
rather clear trend, cycle, seasonal and irregular components. We applied the SIML
filtering with m = 29; red curve indicates the estimated trend-cycle component.
Since λm = 29/[2n] ∼ 0.14, which means 1.8 year, that is, we have estimated the
trend-cycle components over about 2 years cycle. It may be practically reasonable
choice for the trend-cycle component from our macro data. The noise component
is constructed as the observed data minus the estimated trend-cycle and seasonal
components. By using Zn−transformed data, we capture the significant effects at
the seasonal frequencies. Because we use the quarterly data, we have sharp peaks
and troughs at frequency 1/4 and 1/2. The estimated seasonal component moves
regularly, which may change over time rather smoothly. We have found that the
estimated seasonal component by using the X-13ARIMA-SEATS tend to exhibit

2We have taken data from https://www.esri.cao.go.jp/jp/sna/menu.html (Economic and Social
Research Institute (ESRI), Cabinet Office, Japan). They are original series in real terms and ESRI
uses the X-12-ARIMA smoothing program for constructing seasonal-adjusted official data. We use
the consumption series of durable goods as a typical component of GDP.
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more rigid seasonality. Although the estimated seasonal component gives regular
seasonal pattern, the estimated trend-cycle and noise components suggest there
were some abrupt changes around the year of 2008-2009, 2011, and 2014, which are
different from the usual noise component. (One way to deal with these effects it
to use outlier detections and Reg-ARIMA model in X-13ARIMA-SEATS program.)
It may be appropriate to consider the possibility that there are major breaks and
institutional changes during the sample period.

First, there was a rapid downward effect attributed by the 2008 financial cri-
sis, and we may consider this event for being appropriate to use the ramp-dummy
at 2008Q3-2009Q1. Figures 2 and 3 summarize SIML smoothing and frequency
regression results for the cases.

Second, we applied two AO-dummy variables at 2011Q1 and 2014Q1. (See Ex-
ample 2 in Section 4.) In these periods, there were large effects caused by the 2011
earthquake in Japan and an increase of consumption tax in April 2014. There was a
temporary increase of durable consumption in the 2014Q1 period. Both events had
significant effects on the macroeconomy and consumption in Japan.

Finally, Figure 4 represents a summary of SIML smoothing and frequency regres-
sion with three dummy variables considered simultaneously. (See Example 2 and 4
in Section 4.) Based on the criteria of AIC, we selected the last case for the best
modeling for the macro-consumption of durable goods; these effects are captured by
our method. By using the transformed data of (4.14) and (4.15) and the dummy
variables, the AIC(w) was calculated based on the regression equation by

AIC(w) = n log σ̂2
w + 2r(6.1)

where we use σ̂2
w calculated from the residuals of the dummy regression ((4.2) with

p = 1) and r denotes the number of dummy variables 3.
In our example, the main purpose of data analysis was to evaluate the appropriate-
ness of the published data. This type of task was not easy because the published
data used the X-12-ARIMA program of the Cnensus Bureau and it is a complicated
procedure in practice 4. For each models, we have calculated two AICs were calcu-
lated: the first AIC in figures was calculated using all frequency data while the AIC
in the parenthesis was calculated using all frequency data except data around the
seasonal frequency.

By using the model selection criteria for minimizing these AICs, we find that
SIML smoothing with three dummy variables (i.e., two AOs and a double ramp)

3This AIC(w) is based on (5.6) and (5.7) with dummy variables, which can be implemented
easily. However, we have taken the case as if akn were constant with respect to k because we use
the procedure, that is free from the maximum likelihood (ML) estimation of unknown parameters
needed. In this sense, our AIC(w) is an approximate one.

4The details of their estimation procedure from original series are explained at the web-cite of
ESR (Economic and Social Research Institute, Cabinet office of Japan),
https://www.esri.cao.go.jp/en/sna/sokuhou/sokuhou top.html.
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is the best model. We have reasonable result on the decomposition of original
time series into trend-cycle, seasonal, and noise components. In the selected model,
the trend-cycle component includes one structural change and the noise component
includes two outliers.

This empirical analysis illustrates that we need to consider the important role
of incorporating the effects of the change point problem and abrupt changes in the
seasonal adjustment procedure. In this respect, we have illustrated our methodology
based on the frequency regression and smoothing.

7. Concluding Remarks

In many original macro-economic time series, it is common to observe nonstationary
trend, cycles, seasonal, and measurement errors simultaneously. In addition to these
components, we sometimes observe abrupt changes, trading-day effects, and other
irregular components. Thus, it seems difficult to remove the seasonal component
from the original time series in the seasonal adjustment and construct macro-index,
which involve multiple nonstationary time series.

This paper presents a new approach to handle nonstationary time series using
frequency regression based on the SIML modelling in a systematic manner. We use
the SIML method because we can separate the likelihood information of time series
data into different frequency parts of their components. Our method sheds a new
light on some practical approache to handle economic time series, which have been
practically used in official seasonal adjustments without formal justifications. There
shall be many empirical examples.

There are further problems to be investigated. The present study is based on
the time series decomposition in (2.1)-(2.4). There can be more complicated decom-
position models including trend, cycle and seasonal components in a different way.
Then we need to investigate the relationships among trends, cycles, seasonals and
irregular noises components of nonstationary and stationary time series both in the
time and frequency domains. It seems that some extensions of Theorems 3.1 and
4.1 in this paper can be developed.

Another issue would be the computation of the procedure we explained in this
paper. We have been developping an R-program of the SIML method, which will
be available hopefully in the near future.
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APPENDIX A : Mathematical Derivations

We present the derivations of Theorem 3.1 and Theorem 4.1 as an application of
Theorem A.1 below. Theorem A.1 gives the asymptotic properties of the estima-
tion of long-run variance-covariance matrix for the nonstationary errors-in-variables
models. We first provide the intuition for our result and then give some details of
its derivation. Some derivations are omitted because they are direct extensions of
the results reported by Kunitomo and Sato (2021).

A-I A Heuristic Derivation : We consider the nonstationary process yi (i =
1, · · · , n) defined by (2.1)-(2.4) given the initial conditions yi,xi (i ≤ 0). (Without
loss of generality, we often ignore the effects of initial conditions whenever they are
asymptotically negligible.)

Let θjk = 2π
2n+1

(j − 1
2
)(k − 1

2
) , p

(n)
jk = 1√

2n+1
(eiθjk + e−iθjk) and for Yn = (y

′
i) we

write zk (k = 1, · · · , n) as

zk(λ
(n)
k ) =

n∑
j=1

p
(n)
jk rj , rj = yj − yj−1 ,(A.1)

which is a (real-valued) Fourier type transformation and the initial conditions are
fixed.
Then, we find that zk(λ

(n)
k ) = (zin(λ

(n)
k )) (k = 1, · · · , n) are the (real-valued) Fourier-

transformation of data at the frequency λ
(n)
k (= (k − 1/2)/(2n + 1)), which is a

(real-part of) estimate of the orthogonal incremental vector process (p× 1) z(λ) =
(zi(λ)) (0 ≤ λ ≤ 1/2) and z(λ) is a continuous process in the frequency domain.
By evaluating

E
[
zk(λ

(n)
k )zk′ (λ

(n)

k′
)
′]
=
[

1

2n+ 1

] n∑
j,j′=1

(eiθjk + e−iθjk)(e
iθ

j
′
k
′ + e

−iθ
j
′
k
′ )E[rjr

′

j′ ] ,

we find that the effects of each term with k ̸= k
′
are asymptotically negligible, and

the dominant sum with k = k
′
is asymptotically equivalent to

[
n

2n+ 1

] n−1∑
h=−(n−1)

[
cos 2π

k − 1/2

2n+ 1
h

]
[Γ(h) + Γ(−h)] ,

where we use the notation Γ(h) = E(rjr
′
j−h) (we have ignored the constant means

with E[rj] = 0).
Then, by using the conditions in (2.3)-(2.4), it converges to

fSR(λ) =
∞∑

h=−∞
cos(2πhλ)Γ(h) , 0 ≤ λ ≤ 1

2
,(A.2)
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where the symmetrized spectral density matrix for rj is given by fSR(λ) = (1/2)[f∆y(λ)+
f̄∆y(λ).

Under the assumption of stationarity of rj it has been known that zk(λ
(n)
k ) are asymp-

totically uncorrelated random variables. (See Chapters 8-9 of Anderson (1971), for
instance.) By using straightforward (but lengthy) evaluations, we find that for
k ̸= k

′

E[zik(λ
(n)
k )zjk(λ

(n)
k )zhk(λ

(n)

k′
)zlk(λ

(n)

k′
)] = σij(λ

(n)
k )σhl(λ

(n)

k′
) + o(1)(A.3)

and for k = k
′

E[zik(λ
(n)
k )zjk(λ

(n)
k )zhk(λ

(n)
k )zlk(λ

(n)
k )](A.4)

= σij(λ
(n)
k )σhl(λ

(n)
k ) + σih(λ

(n)
k )σjl(λ

(n)
k ) + σil(λ

(n)
k )σjh(λ

(n)
k ) + o(1) ,

where Γ(h) = (Γij(h)) and

σij(λ
(n)
k ) =

n−1∑
h=−(n−1)

[
cos 2πλ

(n)
k h

]
Γij(h) .(A.5)

From (A.3)-(A.4), we notice that zk(λ
(n)
k ) are (as if) normally distributed random

variables with (A.2).

As n → ∞ and m/n → 0, we have λ
(n)
k → 0 for 1 ≤ k ≤ m. We write for

k = 1, · · · ,m and as m/n → 0,

lim
n→∞

σij(λ
(n)
k ) = σ

(x)
ij (i, j = 1, · · · , p)(A.6)

and Σx = (σ
(x)
ij ). Then in this situation

Var[
1√
m

m∑
k=1

zik(λ
(n)
k )zjk(λ

(n)
k )] −→ σ

(x)
ii σ

(x)
jj + σ

(x)2
ij .(A.7)

We construct a sequence of random variables, which are approximately uncorrelated
and for i, j = 1, · · · , p

sij(t) = zik(λ
(n)
t )zjk(λ

(n)
t )− E[zik(λ

(n)
t )zjk(λ

(n)
t )]

and

Mij(n, k) =
k∑

t=1

sij(t) .

Then, heuristically, we can apply the central limit theorem (CLT) for the multivari-
ate Gaussian stationary process to obtain the asymptotic normality of the normal-
ized quadratic quantities. However, to show this argument in a rigorous way, we
need further developments.

24



A-II Proof of Main Results : We first prepare a general result on the consistency
and asymptotic normality of the SIML estimation in nonstationary time series; the
result may have some new aspect.

Theorem A.1: Assume that the fourth order moments of each element of v
(x)
i and

vi in (2.1)-(2.4) are bounded. Let

Σ̂x(= (σ̂
(x)
gh )) =

1

m
Z∗′

mZ
∗
m ,(A.8)

which is G∗
m in (3.2). Then

(i) For mn = nα ([mn] = m) and 0 < α < 1, as n −→ ∞

Σ̂x −Σx
p−→ O .(A.9)

(ii) We set Σx = (σ
(x)
gh ). For mn = nα ([mn] = m) and 0 < α < 0.8, as n −→ ∞

√
mn

[
σ̂
(x)
gh − σ

(x)
gh

] L−→ N
(
0, σ(x)

gg σ
(x)
hh +

[
σ
(x)
gh

]2)
.(A.10)

The covariance of the limiting distributions of
√
mn[σ̂

(x)
gh −σ

(x)
gh ] and

√
mn[σ̂

(x)
kl −σ

(x)
kl ]

is given by σ
(x)
gk σ

(x)
hl + σ

(x)
gl σ

(x)
hk (g, h, k, l = 1, · · · , p).

Proof of Theorem A.1 : The proof consists of several steps.
(Step 1) : We set m = [mn] and mn depends on n. Let z

(x)
k = (z

(x)
kj ) and Z

(v)
k =

(z
(v)
kj ) (k = 1, · · · , n) be the k-th row vector elements of n× p matrices

Z(x)
n = K∗

n(Xn − X̄0) , Z
(v)
n = K∗

nVn , K∗
n = PnC

−1
n ,(A.11)

respectively, where we denote Xn = (x
′
k) = (xkg), Vn = (v

′
k) = (vkg), Zn = (z

′
k) (=

(zkg)) as n × p matrices with zkg = z
(x)
kg + z

(v)
kg . Here, we set the initial conditions

X̄0 = Ȳ0 and we find that the effects of initial condition are stochastically negligible
in the frequency regression. We write zkg, z

(x)
kg , z

(v)
kg as the g−th component of zk, z

(x)
k ,

and z
(v)
k (k = 1, · · · , n; g = 1, · · · , p).

By decomposing Σ̂x −Σx(= (σ̂
(x)
gh − σ

(x)
gh ) for g, h = 1, · · · , p) into the effects of z

(x)
k

and z
(v)
k , we rewrite

√
mn

[
1

m

m∑
k=1

zkz
′

k −Σx

]
(A.12)

=
√
mn

[
1

m

m∑
k=1

z
(x)
k z

(x)′

k −Σx

]
+

√
mn

m

m∑
k=1

E[z
(v)
k z

(v)′

k ]

+

√
mn

m

m∑
k=1

[
z
(v)
k z

(v)′

k − E[z
(v)
k z

(v)′

k ]
]
+

√
mn

m

m∑
k=1

[
z
(x)
k z

(v)′

k + z
(v)
k z

(x)′

k

]
.
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Then we shall show that three terms except the first term of (A.12) in the right-hand
side are op(1) under the condition of 0 < α < 0.8. To show (ii) of Theorem A.1, we
need to show that the dominant term in (A.12) is

√
mn

[
1

m

m∑
k=1

z
(x)
k z

(x)′

k −Σx

]
,(A.13)

and it is asymptotically normal as mn → ∞ (n → ∞). By denoting Γx(h) =
E[∆xt∆x

′
t−h], we express

Σx = f∆x(0) =
+∞∑

h=−∞
Γx(h) .(A.14)

From θjk = [2π/(2n + 1)](j − 1
2
)(k − 1

2
), we set cij = (2/m)

∑m
k=1 cos(θik) cos(θjk)

(i, j = 1, · · · , n). Then for any (non-zero p× 1) constant vector a, we can evaluate

E

[
1

m

m∑
k=1

(a
′
z
(x)
k )2 − a

′
Σxa

]2
= (

2

2n+ 1
)2E

 n∑
j,j′=1

cjj′a
′
(v

(x)
j v

(x)′

j′
− E(v

(x)
j v

(x)′

j′
)a

2

≤ K1[
2

2n+ 1
]2

n∑
j,j

′=1

c2j,j′ ,

where K1 is a positive constant and we have used the boundedness of fourth mo-
ments. Sincem

∑n
j,j′=1

c2
j,j′

= (n+1/2)2, we can show that the above term converges

to zero as m → ∞,m/n → 0.
(Step 2) :

Let bk = (bkj) = α
′
kPnC

−1
n = (bkj) and α

(n)′

k = (0, · · · , 1, 0, · · ·) be an n× 1 vector.

We write z
(v)
kg =

∑n
j=1 bkj vjg for the seasonal and noise part and use the relation

(PnC
−1
n C

′−1
n P

′

n)k,k′ = δ(k, k
′
)4 sin2[

π

2n+ 1
(k − 1

2
)] = δ(k, k

′
)a∗kn .(A.15)

Then under the conditions that ∥C(v)
j ∥ = O(ρj) (0 ≤ ρ < 1), we can find K2 (a

positive constant) such that

E[(z
(v)
kg )]

2 = E[
n∑

i=1

bkivig
n∑

j=1

bkjvjg] ≤ K2 × a∗kn .(A.16)

It is because E[(z
(v)
kg )]

2 =
∑n

i,j=1 bkibkjσ
(v)
gg (i− j) , where σ(v)

gg (i− j) is the (i− j)−th
autocovariance of vig and vjg. (We denote bki = 0 for i < 0 and i > n.) Then

E[(z
(v)
kg )]

2 =
n−1∑

l=−(n−1)

[
n∑

j=1

bkjbk,j+lσ
(v)
gg (l)] ≤ [

n∑
j=1

b2kj]
∞∑

l=−∞
|σ(v)

gg (l)| .
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Because ∥C(v)
j ∥ = O(ρj),

∑∞
l=−∞ |σ(v)

gg (l)| is bounded. Also it is straight-forward to
find that

1

m

m∑
k=1

a∗kn =
1

m
2

m∑
k=1

[
1− cos(π

2k − 1

2n+ 1
)

]
= O(

m2

n2
) ,(A.17)

by using the relation

m∑
k=1

2 cos(π
2k − 1

2n+ 1
) =

m∑
k=1

[ei
2π

2n+1
(k− 1

2
) + e−i 2π

2n+1
(k− 1

2
)] =

sin( 2π
2n+1

m)

sin( π
2n+1

)
.

Then the second term of (A.12) becomes

1

m

m∑
k=1

E[z
(v)
kg ]

2 ≤ K3
1

m

m∑
k=1

a∗kn = O(
m2

n2
) ,(A.18)

which is o(1) if we set α such that 0 < α < 1 and K3 is a positive constant.
For the fourth term,

E

 1

m

m∑
j=1

z
(x)
kg z

(v)
kg

2 = 1

m2

m∑
k,k′=1

E
[
z
(x)
kg z

(x)

k′ ,g
z
(v)
kg z

(v)

k′ ,g

]
= O(

m

n2
) .

In the above evaluation we have used the evaluation that if we set sjk = cos θjk (j, k =
1, 2, · · · , n), then we have the relation

|
n∑

j=1

sjksj,k′ | ≤ [
n∑

j=1

s2jk] =
n

2
+

1

4
for any k ≥ 1 .

Finally, for the third term, we need to consider the variance of

(z
(v)
kg )

2 − E[(z
(v)
kg )

2] =
n∑

j,j′=1

bkjbk,j′
[
vjgvj′g − E[vjgvj′ ,g]

]
.

Then by using the assumptions, we have after some evaluations, we find a positive
constant K4 such that

E

[
1

mn

m∑
k=1

((z
(v)
kg )

2 − E[(z
(v)
kg )

2])

]2
(A.19)

=
1

m2

m∑
k1,k2=1

E

 n∑
j1,j2,j3,j4=1

bk1,j1bk1,j2 (vj1,gvj2,g − E(vj1,gvj2,g))

×bk2,j3bk2,j4 (vj3,gvj4,g − E(vj3,gvj4,g))]

≤ K4
1

m2
[
m∑
k=1

a∗kn]
2

= O(
1

m2
× (

m3

n2
)2) ,
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which is O(m4/n4) by straight-forward calculations. Here we just give an illustration

of our derivations when p = 1 and we re-write vi =
∑∞

j=0 c
(v)
j e

(v)
i−j (c

(v)
j = C

(v)
j ) and

we evaluate

m∑
k1,k2=1

∑
j1,j2,j3,j4

bk1,j1bk1,j2bk2,j3bk2,j4 × E{[vj1vj2 − E(vj1vj2)][vj3vj4 − E(vj3vj4)]}

=
m∑

k1,k2=1

∑
j1,j2,j3,j4

bk1,j1bk1,j2bk2,j3bk2,j4

∞∑
l1,l2,l3,l4=0

c
(v)
l1
c
(v)
l2
c
(v)
l3
c
(v)
l4

×E{[ej1−l1ej2−l2 − E(ej1−l1ej2−l2)][ej3−l3ej4−l4 − E(ej3−l3ej4−l4)]} .

We need to evaluate the corresponding terms for four cases when (i) j1−l1 = j2−l2 =
j3 − l3 = j4 − l4, (ii) j1 − l1 = j2 − l2 ̸= j3 − l3 = j4 − l4, (iii) j1 − l1 = j3 − l3 ̸=
j2 − l2 = j4 − l4, (iv) j1 − l1 = j4 − l4 ̸= j2 − l2 = j4 − l4. By using the condition in

the general case that ∥C(v)
j ∥ = O(ρj) (j ≥ 0, 0 ≤ ρ < 1), we have

∑∞
j=0 |c

(v)
j | < ∞ in

this special case. We also utilize the relation such as
∑n

j=1 bkjbk′j = δ(k, k
′
)a∗kn in the

general case and we have the notation that bk,j = 0 for k = 1, · · · ,m, j < 0, j > n
and cj = 0 (j < 0).
Then in each (i)-(iv) case, we can take a positive constant K5 such that (A.19) is
less than

K5

m∑
k1,k2=1

[
n∑

j1=1

b2k1,j1 ]
1/2[

n∑
j2=1

b2k1,j2 ]
1/2[

n∑
j3=1

b2k2,j3 ]
1/2[

n∑
j4=1

b2k2,j4 ]
1/2 .

The above evaluation methd works in the general case with a complication of no-
tations. Therefore, by using (A.17), the third term of (A.12) is negligible if we set
α such that 0 ≤ α < 1. (The derivations are similar to the ones in Kunitomo and
Sato (2021).)
(Step 3) : When we have the condition 0 < α < 0.8, we need to evaluate the
limiting distribution of the first term of (A.12) because of (A.15). Instead of (A.13),
we consider the asymptotic distribution of

s
(m)∗
ij =

1√
m
[g

(m∗)
ij − E(g

(m∗)
ij )](A.20)

and

g
(m∗)
ij = (

1

m

m∑
k=1

z
(x)
k z

(x)′

k )ij (i, j = 1, · · · , p) .(A.21)

By using (A.11) and Pn = (p
(n)
jk ), we decompose

s
(m)∗
ij =

1√
m

m∑
k=1

[
n∑

s=t=1

p
(n)2
ks (v

(x)
is v

(x)
js − E(v

(x)
is v

(x)
js ))](A.22)

+
1√
m

m∑
k=1

[
n∑

s ̸=t=1

p
(n)
ks p

(n)
kt (v

(x)
is v

(x)
jt − E(v

(x)
is v

(x)
jt ))]
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and v
(x)
t (= (v

(x)
it )) = ∆xt =

∑∞
s=0C

(x)
s e

(x)
t−s , where C

(x)
s (= (Cis)) are p× p matrices

with Cis = O(ρ|h|) (0 ≤ ρ < 1), and e(x)s are a sequence of mutually independent
random vectors with E[e(x)s ] = 0, E[e(x)s e(x)

′
s ] = Σ(x)

v (> 0).

When we have the condition mn/n → 0 as n → ∞, we have 1√
mn

[σ
(x)
ij −E(g

(m∗)
ij )] =

o(1) . The evaluation of the limiting distribution of (A.20) or (A.22) is considerably
simpler than that for (A.13).

We use the relations p
(n)2
ks = [4/(2n+1)][cos θks]

2,
∑m

k=1 p
(n)2
ks = [2m/(2n+1)]css,

and
∑n

s=1 c
2
ss = O(n), cst = [2/m]

∑m
k=1 cos θsk cos θtk, and θjk = 2π

2n+1
(j − 1

2
)(k −

1
2
). Because css in bounded, and v(x)

s has a MA representaion with conditions
on its coefficients in (2.3), it is possible to evaluate the variances of [2

√
m/(2n +

1)]
∑n

s=1 css[v
(x)
is v

(v)
jt −E(v

(v)
is v

(x)
jt )], which converge to zeros in probability whenmn/n →

0 as n → ∞. Hence, the first term of (A.22) is asymptotically negligible because of
the condition mn/n → 0 as n → ∞.
Then, we only need to show the asymptotic normality of the leading term of (A.20),
which is

s
(m)∗∗
ij =

2
√
m

2n+ 1

n∑
s ̸=t=1

cst[v
(x)
is v

(v)
jt − E(v

(v)
is v

(x)
jt )] .(A.23)

Under the stationarity condition of v(x)
s , the difference between (A.23) and the

second term of (A.22) is asymptotically negligible. Also under the stationarity and
the conditions on coefficients in (2.3), it has been known in time series analysis that
the effects of initial conditions on v(x)

s (s ≤ 0) are asymptotically negligible. (We
omit the detail of this arguments because it may be straightforward.)
(Step 4) : Our proof of the asymptotic normality requires a further derivation,
which is a modification of the method for the spectral density estimation used in
the proof of Theorem 9.4.1 in Anderson (1971). Because some of our arguments are
similar, we only repeat the essential arguments and some differences. We provide
the proof for the case when p = 1 and use the notation C(x)

s = cs (s = 0, 1, · · ·),
v(x)
s = v(x)s , e(x)s = es and s(m)∗∗ = s

(m)∗∗
ij (i = j = 1) because the proof of the general

case when p ≥ 1 can be obtained by using the standard device of v∗j = a
′
v
(x)
j (j =

1, · · · , n) with an arbitrary (p× 1 non-zero constant) vector a.

We take Kn = [n/mn] be a sequence of positive integers and Kn → ∞ (n → ∞).
Then, given s, cst → 0 for t − s > Kn as mn, n → ∞ and mn/n → 0. Then, by
taking t = s+ k (k = 1, · · · , n− s) we rewrite

s(m)∗∗ =
4
√
m

2n+ 1

n∑
t>s=1

cst[v
(x)
s v

(x)
t − E(v(x)s v

(x)
t )] ,(A.24)

=
4
√
m

2n+ 1

∞∑
l,l′=1

clcl′
n∑

s=1

n∑
t=s+1,s−l ̸=t−l′

cstes−let−l′ .
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=
4
√
m

2n+ 1

∞∑
l,l′=1

clcl′
n∑

s=1

n−s∑
k=1

cs,s+kes−les+k−l′ .

We truncate the sum
∑∞

l,l′=1
[ · ] by a sub-sequence rn (rn → ∞ as n → ∞),

and decompose the sum as (
∑rn

l=1+
∑∞

l=rn+1) (
∑rn

l′=1
+
∑∞

l′=rn+1
)[ · ]. We can take

a sequence of sums
∑rn

l,l′=1
[ · ] such that rn → ∞ and

∑∞
l=rn+1 |γl| → 0. Then

we approximate the infinite sum by a finite sum because the remaing terms are of
smaller order asymptotically. The main term is

s
(m)∗∗
1 =

4
√
m

2n+ 1

rn∑
l,l′=1

clcl′
n∑

s=1

n−s∑
k=1

cs,s+kes−les+k−l′(A.25)

=
4
√
m

2n+ 1

rn∑
l,l′=1

clcl′
n−q−l

′∑
h=l−l′+1,h̸=0

n−l∑
q=1−l

cq+l,q+h+l′eqeq+h .

Since some parts of the above summation (i.e., the terms in
∑

l−l′≤h<1[ · ],∑
n−q−l′≤h<n−q[ · ],

∑
1−l≤q<0[ · ] and

∑
n−l≤q≤n−1[ · ] ) can be of negligible order

asymptotically, we can approximate the summation as

s
(m)∗∗
11 =

4
√
m

2n+ 1
[
rn∑
l=1

cl
rn∑
l′=1

cl′ ]
n−q−l

′∑
h=l−l′+1

n−l∑
q=1−l

cq+l,q+h+l′eqeq+h(A.26)

∼ 4
√
m

2n+ 1
[
rn∑
l=1

cl
rn∑
l′=1

cl′ ]
n−q∑
h=1

n∑
q=1

cq+l,q+h+l′eqeq+h ,

where we denote cs,t = 0 (s > n or t > n) for the notational convenience.
(Step 5) : As the final step with p = 1, we approximate the sequence of weakly
dependent random variables by a sum of independent noise random variables, and
apply the CLT.
Let mn = nα (0 < α < 0.8), Kn = [n/mn], Nn = [nδ/2] (δ > 0), and Mn = [n1−δ/2]
such that 1 − δ/2 > 0 and α + δ/2 > 1. Then, Kn/Nn → 0, Nn/n → 0

√
mn/n ∼

[1/
√
n][1/

√
Kn] and Mn ∼ n/Nn as n → ∞. In the following we utilize the relation

cq+l,q+h+l′ − cq,q+h = o(1) for l, l
′
= 1, · · · , rn if we take rn such that rn ×mn/n → 0

as n,mn → ∞. This is because

sin 2πm[
2q + h+ l + l

′

2n+ 1
]− sin 2πm[

2q + h

2n+ 1
]

= sin 2πm[
2q + h

2n+ 1
][cos 2πm(

l + l
′

2n+ 1
)− 1] + cos 2πm[

2q + h

2n+ 1
] sin 2πm[

l + l
′

2n+ 1
] → 0

as n → ∞.
Furthermore, by using that some parts of (A.26) are of smaller orders as n → ∞
(the terms in

∑
h=Kn+1[ · ]), we can apply the CLT to

s
(m)∗∗∗
11 = 2[

rn∑
l=1

cl]
2 1√

n

1√
Kn

n∑
q=1

Kn∑
h=1

cq,q+heqeq+h ,(A.27)
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where we denote cq,q+h = 0 (q + h > n) for notational convenience. We notice that
cq,q+h (q = 1, · · · , n) is a sequence of bounded real numbers.

Let

Vqn =
1√
Kn

Kn∑
h=1

cq,q+heqeq+h(A.28)

and

Ujn =
1√
Nn

[V(j−1)Nn+1,n + · · ·+ VjNn−Kn,n] (j = 1, · · · ,Mn) .(A.29)

Then, we find that E[Vq,n] = 0, E[Vq,nVq+h,n] = 0 (h is any non-zero integer), E[V 2
q,n]

are bounded. Further, we have that U1,n, · · · , UMn,n are mutually independent and
E[U4

i,n] (i = 1,Mn) are uniformly bounded using the assumption of the boundedness
of the 4-th order moments of Vq (q = 1, · · · , n). Since other terms except the leading
term are stochastically of the smaller order, we can ignore them for evaluating the
limiting distribution, and we apply the Lyapounov-type CLT. By using the relation
that

1√
n

n∑
q=1

Vqn −
1√
Mn

Mn∑
j=1

Ujn
p−→ 0(A.30)

as n → ∞. The remaining terms in the above approximation are of smaller order (i.e.
Kn terms in each Ujn (j = 1, · · · ,Mn)) whenmn, n → ∞ andmn = [nα], 0 < α < 0.8
because of the condition Kn/Nn → 0. Then we have the asymptotic normality of
(A.26) when p = 1. By using the relation m

∑n
s,t=1 c

2
st = (n+ 1/2)2 and

4[
∞∑

j=−∞
cj]

2
n∑

g=1

Kn∑
h=1

cg,g+h[σ
(x)
v ]4 ∼ 2[

∞∑
j=−∞

cj]
2

n∑
s,t=1

c2st[σ
(x)
v ]4 ,(A.31)

we have the desired result of the asymptotic variance when p = 1.
(Step 6) : When p ≥ 1, we can evaluate the asymptotic covariance by calculating
the covariance of

∑
q,h cq,q+hγ

′
avqγ

′
bvq+h and

∑
q′ ,h′ cq′ ,q′+h′γ ‘

cvq′γ
‘
dvq′+h′ , where γa

represents any constant p× 1 vector. Then, after straightforward evaluations, we fi-
nally find the asymptotic covariance in Theorem A.1 as σ(x)

ac σ
(x)
bd +σ

(x)
ad σ

(x)
bc (a, b, c, d =

1, · · · , p).
(Q.E.D)

Proof of Theorem 3.1 : We use the representation

√
mn[β̂m − β] =

√
mnG

∗−1
22 (0, Ik)G

∗
m

(
1
−β

)
.(A.32)

Because G∗
22

p→ Σ
(x)
22 (m/n → 0, n → ∞) and under the assumption that Σ

(x)
22 is a

positive definite matrix, we investigate the asymptotic distribution of

√
mn[β̂

∗
m − β] = Σ

(x)−1
22

1√
m
(0, Ik)G

∗
m

(
1
−β

)
,(A.33)
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which is asymptotically equaivalent to (A.33). Then, its asymptotic variance-covariance
matrix can be written as

AV[β̂m] = Σ
(x)−1
22 Cov

[
(0, Ik)Sb , b

′
S

(
0

′

Ik

)]
Σ

(x)−1
22 ,(A.34)

where S =
√
mn[G

∗
m −Σx] (= (sjk)) and b =

(
1
−β

)
(= (bj)) .

By using Theorem A.1, we can evaluate the (l, l
′
)-th element (l, l

′
= 2, · · · , k+1 = p)

of Σx = (σ
(x)

l,l′
) as

Cov[
k+1∑
j=1

bjsjl
k+1∑
j′=1

bj′sj′ l′ ] =
k+1∑

j,j′=1

bjbj′ (σ
(x)

j,j′
σ
(x)

l,l′
+ σ

(x)

j,l′
σ
(x)

j′ ,l
)

= σ
(x)

l,l′

k+1∑
j=1

bj[
k+1∑
l′=1

bj′σ
(x)

j,j
′ ] + [

k+1∑
j=1

bjσ
(x)

j,l
′ ][

k+1∑
j′=1

bj′σ
(x)

l,j′
]

= σ
(x)

l,l′
σ
(x)
11.2

because [σ
(x)
21 ,Σ

(x)
22 ]b = 0 and

[σ
(x)
11 ,σ

(x)
12 ]b = σ

(x)
11 − σ

(x)
12 Σ

(x)−1
22 σ

(x)
21 .(A.35)

Then we have the result of the asymptotic variance-covariance matrix of (A.30) in
Theorem 3.1.
(Q.E.D)

Proof of Theorem 4.1 : We use the representation

B̂m −B = (W∗′
mW

∗
m)

−1W∗′
mU

∗
m ,(A.36)

whereU∗
m = JmPnC

−1
n Un. Rewrite (A.36) as

√
mn[B̂m−B] = ( 1

mn
W∗′

mW
∗
m)

−1 1√
mn

W∗′
mU

∗
m.

By using a similar argument as the proof of Theorem 3.1 under the assumption of
(4.4), we find that

AV[B̂m] = Σ−1
w∗Cov[

1√
m
W∗′

mU
∗
m,

1√
m
W∗′

mU
∗
m]Σ

−1
w∗ .(A.37)

Then, by using Theorems A.1 and 3.1 we have the result.
(Q.E.D)

APPENDIX B : Figures

In this Appendix, we gather some figures cited in Section 6. All computations have
been done by the program called x12siml written in R, which will be available in
the near future.
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Figure 1: Macro-consumption (Data are the Quarterly real consumption of durable goods
(after log-transformation) between 1994Q1-2019Q4 published by the Economic Social Research
Institute (ESRI), Cabinet Office, Japan.)
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Figure 2: Macro-consumption (Data are the Quarterly real consumption of durable goods
(after log-transformation) between 1994Q1-2019Q4 published by the Economic Social Research
Institute (ESRI), Cabinet Office, Japan.)
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Figure 3: Macro-consumption (Data are the Quarterly real consumption of durable goods
(after log-transformation) between 1994Q1-2019Q4 published by the Economic Social Research
Institute (ESRI), Cabinet Office, Japan.)
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Figure 4: Macro-consumption (Data are the Quarterly real consumption of durable goods
(after log-transformation) between 1994Q1-2019Q4 published by the Economic Social Research
Institute (ESRI), Cabinet Office, Japan.)
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